Accounting for the Developing Brain

  • Jason WolffEmail author


Despite its crucial role in early atypical cognitive and behavioral development, the brain has been largely absent from studies of early intervention. In this chapter, I will address issues related to the integration of neuroscience and education and provide an overview of noninvasive methods for measuring brain structure and function in young children. Throughout, specific challenges, implications, and new opportunities for early childhood special education will be addressed.


Brain imaging Neuroimaging Educational neuroscience Electrophysiology Neuroscience Children with disabilities Early intervention Early childhood special education Early childhood Special education Children with special needs 



This chapter was prepared with support from the National Institute of Mental Health under award number K01 MH101653. The content of this chapter is solely the responsibility of the author and does not necessarily reflect the official views of the National Institutes of Health.


  1. Aeby, A., De Tiège, X., Creuzil, M., David, P., Balériaux, D., Van Overmeire, B., … Van Bogaert, P. (2013). Language development at 2 years is correlated to brain microstructure in the left superior temporal gyrus at term equivalent age: A diffusion tensor imaging study. NeuroImage, 78, 145–51.Google Scholar
  2. Amaro, E., & Barker, G. J. (2006). Study design in fMRI: Basic principles. Brain and Cognition, 60(3), 220–232.CrossRefPubMedGoogle Scholar
  3. Andersen, S.L. (2003). Trajectories of brain development: point of vulnerability or window of opportunity? Neuroscience and Biobehavioral Reviews, 27(1), 3–18.Google Scholar
  4. Aslin, R. N. (2012). Questioning the questions that have been asked about the infant brain using near-infrared spectroscopy. Cognitive Neuropsychology, 29(1–2), 7–33.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bailey, D. B. (2002). Are critical periods critical for early childhood education? Early Childhood Research Quarterly, 17(3), 281–294.CrossRefGoogle Scholar
  6. Beauchaine, T. P., Neuhaus, E., Brenner, S. L., & Gatzke-Kopp, L. (2008). Ten good reasons to consider biological processes in prevention and intervention research. Development and Psychopathology, 20(3), 745–774.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bell, M. A., & Cuevas, K. (2012). Using EEG to study cognitive development: Issues and practices. Journal of Cognition and Development, 13(3), 281–294.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ben Bashat, D., Kronfeld-Duenias, V., Zachor, D. A., Ekstein, P. M., Hendler, T., Tarrasch, R., … Ben Sira, L. (2007). Accelerated maturation of white matter in young children with autism: A high b value DWI study. NeuroImage, 37(1), 40–7.Google Scholar
  9. Bennett, L. M., & Gadlin, H. (2012). Collaboration and team science: From theory to practice. Journal of Investigative Medicine, 60(5), 768–775.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Blasi, A., Mercure, E., Lloyd-Fox, S., Thomson, A., Brammer, M., Sauter, D., … Murphy, D. G. M. (2011). Early specialization for voice and emotion processing in the infant brain. Current Biology, 21(14), 1220–4.Google Scholar
  11. Board on Health Sciences Policy, & Institute of Medicine. (2008). From molecules to minds: Challenges for the 21st century: Workshop summary (p. 47). Washington, DC: National Academies Press.Google Scholar
  12. Bruer, J. T. (2006). Points of view: On the implications of neuroscience research for science teaching and learning: are there any? A skeptical theme and variations: The primacy of psychology in the science of learning. CBE Life Sciences Education, 5(2), 104–110.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Busso, D. S., & Pollack, C. (2014). No brain left behind: Consequences of neuroscience discourse for education. Learning, Media and Technology, 40(2), 1–19.Google Scholar
  14. Cantlon, J. F., Brannon, E. M., Carter, E. J., & Pelphrey, K. A. (2006). Functional imaging of numerical processing in adults and 4-y-old children. PLoS Biology, 4(5), e125.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chakrabarti, L., Scafidi, J., Gallo, V., & Haydar, T. F. (2011). Environmental enrichment rescues postnatal neurogenesis defect in the male and female Ts65Dn mouse model of down syndrome. Developmental Neuroscience, 33(5), 428–441.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cheyne, D., Jobst, C., Tesan, G., Crain, S., & Johnson, B. (2014). Movement-related neuromagnetic fields in preschool age children. Human Brain Mapping, 35(9), 4858–4875.CrossRefPubMedGoogle Scholar
  17. Chuang, N. A., Otsubo, H., Pang, E. W., & Chuang, S. H. (2006). Pediatric magnetoencephalography and magnetic source imaging. Neuroimaging Clinics of North America, 16(1), 193–210.CrossRefPubMedGoogle Scholar
  18. Corrigan, N. M., Shaw, D. W. W., Estes, A. M., Richards, T. L., Munson, J., Friedman, S. D., … Dager, S. R. (2013). Atypical developmental patterns of brain chemistry in children with autism spectrum disorder. JAMA Psychiatry, 70(9), 964–74.Google Scholar
  19. Cramer, S. C., Sur, M., Dobkin, B. H., O’Brien, C., Sanger, T. D., Trojanowski, J. Q., … Vinogradov, S. (2011). Harnessing neuroplasticity for clinical applications. Brain: A Journal of Neurology, 134(Pt 6), 1591–609.Google Scholar
  20. Cuevas, K., Hubble, M., & Bell, M. A. (2012). Early childhood predictors of post-kindergarten executive function: Behavior, parent-report, and psychophysiology. Early Education and Development, 23(1), 59–73.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dawson, G. (2008). Early behavioral intervention, brain plasticity, and the prevention of autism spectrum disorder. Development and Psychopathology, 20(3), 775–803.Google Scholar
  22. Dawson, G., Jones, E. J. H., Merkle, K., Venema, K., Lowy, R., Faja, S., … Webb, S. J. (2012). Early behavioral intervention is associated with normalized brain activity in young children with autism. Journal of the American Academy of Child and Adolescent Psychiatry, 51(11), 1150–9.Google Scholar
  23. Dean, D. C., Dirks, H., O’Muircheartaigh, J., Walker, L., Jerskey, B. A., Lehman, K., … Deoni, S. C. L. (2014). Pediatric neuroimaging using magnetic resonance imaging during non-sedated sleep. Pediatric Radiology, 44(1), 64–72.Google Scholar
  24. Dean, D. C., Jerskey, B. A., Chen, K., Protas, H., Thiyyagura, P., Roontiva, A., … Reiman, E. M. (2014). Brain differences in infants at differential genetic risk for late-onset alzheimer disease: A cross-sectional imaging study. JAMA Neurology, 71(1), 11–22.Google Scholar
  25. DeBoer, T., Scott, L. S., & Nelson, C. A. (2007). Methods for acquiring and analyzing infant event-related potentials. In M. de Haan (Ed.), Infant EEG and event-related potentials (pp. 5–37). New York, NY: Psychology Press.Google Scholar
  26. Deoni, S. C. L., Mercure, E., Blasi, A., Gasston, D., Thomson, A., Johnson, M., … Murphy, D. G. M. (2011). Mapping infant brain myelination with magnetic resonance imaging. The Journal of Neuroscience, 31(2), 784–91.Google Scholar
  27. Dinstein, I., Pierce, K., Eyler, L., Solso, S., Malach, R., Behrmann, M., & Courchesne, E. (2011). Disrupted neural synchronization in toddlers with autism. Neuron, 70(6), 1218–25.Google Scholar
  28. Dosenbach, N. U. F., Nardos, B., Cohen, A. L., Fair, D. A., Power, J. D., Church, J. A., … Schlaggar, B. L. (2010). Prediction of individual brain maturity using fMRI. Science, 329(5997), 1358–61.Google Scholar
  29. Elison, J. T., Paterson, S. J., Wolff, J. J., Reznick, J. S., Sasson, N. J., Gu, H., … Piven, J. (2013). White matter microstructure and atypical visual orienting in 7-month-olds at risk for autism. The American Journal of Psychiatry, 170(8), 899–908.Google Scholar
  30. Elison, J. T., Wolff, J. J., Heimer, D. C., Paterson, S. J., Gu, H., Hazlett, H. C., … Piven, J. (2013). Frontolimbic neural circuitry at 6 months predicts individual differences in joint attention at 9 months. Developmental Science, 16(2), 186–97.Google Scholar
  31. Eyler, L. T., Pierce, K., & Courchesne, E. (2012). A failure of left temporal cortex to specialize for language is an early emerging and fundamental property of autism. Brain: A Journal of Neurology, 135(Pt 3), 949–960.CrossRefGoogle Scholar
  32. Fekete, T., Beacher, F. D. C. C., Cha, J., Rubin, D., & Mujica-Parodi, L. R. (2014). Small-world network properties in prefrontal cortex correlate with predictors of psychopathology risk in young children: A NIRS study. NeuroImage, 85(1), 345–353.CrossRefPubMedGoogle Scholar
  33. Ferrari, M., & Quaresima, V. (2012). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage, 63(2), 921–935.CrossRefPubMedGoogle Scholar
  34. Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews. Neuroscience, 8(9), 700–711.CrossRefPubMedGoogle Scholar
  35. Fox, S.E., Levitt, P., Nelson, C.A. (2010). How the timing and quality of early experiences influence the development of brain architecture. Child Development, 81(1), 28–40.Google Scholar
  36. Fujioka, T., Ross, B., Kakigi, R., Pantev, C., & Trainor, L. J. (2006). One year of musical training affects development of auditory cortical-evoked fields in young children. Brain: A Journal of Neurology, 129(10), 2593–2608.CrossRefGoogle Scholar
  37. Gabrieli, J. D. E. (2009). Dyslexia: A new synergy between education and cognitive neuroscience. Science, 325(5938), 280–283.CrossRefPubMedGoogle Scholar
  38. Gaffrey, M. S., Barch, D. M., Singer, J., Shenoy, R., & Luby, J. L. (2013). Disrupted amygdala reactivity in depressed 4- to 6-year-old children. Journal of the American Academy of Child and Adolescent Psychiatry, 52(7), 737–746.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Gebauer, D., Fink, A., Filippini, N., Johansen-Berg, H., Reishofer, G., Koschutnig, K., … Enzinger, C. (2012). Differences in integrity of white matter and changes with training in spelling impaired children: A diffusion tensor imaging study. Brain Structure & Function, 217(3), 747–60.Google Scholar
  40. Geng, X., Gouttard, S., Sharma, A., Gu, H., Styner, M., Lin, W., … Gilmore, J. H. (2012). Quantitative tract-based white matter development from birth to age 2years. NeuroImage, 61(3), 542–57.Google Scholar
  41. Gervain, J., Mehler, J., Werker, J. F., Nelson, C. A., Csibra, G., Lloyd-Fox, S., … Aslin, R. N. (2011). Near-infrared spectroscopy: a report from the McDonnell infant methodology consortium. Developmental Cognitive Neuroscience, 1(1), 22–46.Google Scholar
  42. Goswami, U. (2006). Neuroscience and education: From research to practice? Nature Reviews. Neuroscience, 7(5), 406–411.CrossRefPubMedGoogle Scholar
  43. Gozzi, M., Nielson, D. M., Lenroot, R. K., Ostuni, J. L., Luckenbaugh, D. A., Thurm, A. E., … Swedo, S. E. (2012). A magnetization transfer imaging study of corpus callosum myelination in young children with autism. Biological Psychiatry, 72(3), 215–20.Google Scholar
  44. Graham, A. M., Fisher, P. A., & Pfeifer, J. H. (2013). What sleeping babies hear: A functional MRI study of interparental conflict and infants’ emotion processing. Psychological Science, 24(5), 782–789.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Grossmann, T., Oberecker, R., Koch, S. P., & Friederici, A. D. (2010). The developmental origins of voice processing in the human brain. Neuron, 65(6), 852–858.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hart, L. A. (1981). Brain, language, and new concepts of learning. Educational Leadership, 38(6), 443–445.Google Scholar
  47. Hazlett, H. C., Poe, M. D., Gerig, G., Styner, M., Chappell, C., Smith, R. G., … Piven, J. (2011). Early brain overgrowth in autism associated with an increase in cortical surface area before age 2 years. Archives of General Psychiatry, 68(5), 467–76.Google Scholar
  48. Hazlett, H. C., Poe, M. D., Lightbody, A. A., Gerig, G., Macfall, J. R., Ross, A. K., … Piven, J. (2009). Teasing apart the heterogeneity of autism: Same behavior, different brains in toddlers with fragile X syndrome and autism. Journal of Neurodevelopmental Disorders, 1(1), 81–90.Google Scholar
  49. Henkelman, R. M., Stanisz, G. J., & Graham, S. J. (2001). Magnetization transfer in MRI: A review. NMR in Biomedicine, 14(2), 57–64.CrossRefPubMedGoogle Scholar
  50. Hoeft, F., McCandliss, B. D., Black, J. M., Gantman, A., Zakerani, N., Hulme, C., … Gabrieli, J. D. E. (2011). Neural systems predicting long-term outcome in dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 108(1), 361–6.Google Scholar
  51. Hoeft, F., Walter, E., Lightbody, A. A., Hazlett, H. C., Chang, C., Piven, J., & Reiss, A. L. (2011). Neuroanatomical differences in toddler boys with fragile x syndrome and idiopathic autism. Archives of General Psychiatry, 68(3), 295–305.Google Scholar
  52. Hoff, G. E. A.-J., Van den Heuvel, M. P., Benders, M. J. N. L., Kersbergen, K. J., & De Vries, L. S. (2013). On development of functional brain connectivity in the young brain. Frontiers in Human Neuroscience, 7, 650.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Hofstetter, S., Tavor, I., Tzur Moryosef, S., & Assaf, Y. (2013). Short-term learning induces white matter plasticity in the fornix. The Journal of Neuroscience, 33(31), 12844–12850.CrossRefPubMedGoogle Scholar
  54. Hosseini, S. M. H., Black, J. M., Soriano, T., Bugescu, N., Martinez, R., Raman, M. M., … Hoeft, F. (2013). Topological properties of large-scale structural brain networks in children with familial risk for reading difficulties. NeuroImage, 71, 260–74.Google Scholar
  55. Houdé, O., Pineau, A., Leroux, G., Poirel, N., Perchey, G., Lanoë, C., … Mazoyer, B. (2011). Functional magnetic resonance imaging study of Piaget’s conservation-of-number task in preschool and school-age children: A neo-Piagetian approach. Journal of Experimental Child Psychology, 110(3), 332–46.Google Scholar
  56. Hyde, D. C., Boas, D. A., Blair, C., & Carey, S. (2010). Near-infrared spectroscopy shows right parietal specialization for number in pre-verbal infants. NeuroImage, 53(2), 647–652.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Imai, M., Watanabe, H., Yasui, K., Kimura, Y., Shitara, Y., Tsuchida, S., … Taga, G. (2014). Functional connectivity of the cortex of term and preterm infants and infants with Down’s syndrome. NeuroImage, 85(Pt 1), 272–8.Google Scholar
  58. Jöbsis, F. F. (1977). Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, 198(4323), 1264–1267.CrossRefPubMedGoogle Scholar
  59. Jones, D. K., Knösche, T. R., & Turner, R. (2013). White matter integrity, fiber count, and other fallacies: The do’s and don’ts of diffusion MRI. NeuroImage, 73, 239–254.CrossRefPubMedGoogle Scholar
  60. Keehn, B., Wagner, J. B., Tager-Flusberg, H., & Nelson, C. A. (2013). Functional connectivity in the first year of life in infants at-risk for autism: A preliminary near-infrared spectroscopy study. Frontiers in Human Neuroscience, 7, 444.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Kessel, F., & Rosenfield, P. L. (2008). Toward transdisciplinary research: Historical and contemporary perspectives. American Journal of Preventive Medicine, 35, S225–S234.CrossRefPubMedGoogle Scholar
  62. Kikuchi, M., Shitamichi, K., Yoshimura, Y., Ueno, S., Remijn, G. B., Hirosawa, T., … Minabe, Y. (2011). Lateralized theta wave connectivity and language performance in 2- to 5-year-old children. The Journal of Neuroscience, 31(42), 14984–8.Google Scholar
  63. Lloyd-Fox, S., Blasi, A., Elwell, C. E., Charman, T., Murphy, D., & Johnson, M. H. (2013). Reduced neural sensitivity to social stimuli in infants at risk for autism. Proceedings in Biological Sciences, 280(1758), 20123026.CrossRefGoogle Scholar
  64. Lloyd-Fox, S., Wu, R., Richards, J. E., Elwell, C. E., & Johnson, M. H. (2015). Cortical activation to action perception is associated with action production abilities in young infants. Cerebral Cortex, 25(2), 289–297.Google Scholar
  65. Logothetis, N. K. (2003). The underpinnings of the BOLD functional magnetic resonance imaging signal. The Journal of Neuroscience, 23(10), 3963–3971.PubMedGoogle Scholar
  66. Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453(7197), 869–878.CrossRefPubMedGoogle Scholar
  67. Mahone, E. M., Crocetti, D., Ranta, M. E., Gaddis, A., Cataldo, M., Slifer, K. J., … Mostofsky, S. H. (2011). A preliminary neuroimaging study of preschool children with ADHD. The Clinical Neuropsychologist, 25(6), 1009–28.Google Scholar
  68. McCabe, D. P., & Castel, A. D. (2008). Seeing is believing: The effect of brain images on judgments of scientific reasoning. Cognition, 107(1), 343–352.CrossRefPubMedGoogle Scholar
  69. Mori, S., & Zhang, J. (2006). Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron, 51(5), 527–539.CrossRefPubMedGoogle Scholar
  70. Moriguchi, Y., & Hiraki, K. (2009). Neural origin of cognitive shifting in young children. Proceedings of the National Academy of Sciences of the United States of America, 106(14), 6017–6021.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Mosconi, M. W., Cody-Hazlett, H., Poe, M. D., Gerig, G., Gimpel-Smith, R., & Piven, J. (2009). Longitudinal study of amygdala volume and joint attention in 2- to 4-year-old children with autism. Archives of General Psychiatry, 66(5), 509–516.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Mundy, P., Fox, N., & Card, J. (2003). EEG coherence, joint attention and language development in the second year. Developmental Science, 6(1), 48–54.CrossRefGoogle Scholar
  73. Nordahl, C. W., Simon, T. J., Zierhut, C., Solomon, M., Rogers, S. J., & Amaral, D. G. (2008). Brief report: Methods for acquiring structural MRI data in very young children with autism without the use of sedation. Journal of Autism and Developmental Disorders, 38(8), 1581–1590.CrossRefPubMedGoogle Scholar
  74. O’Shaughnessy, E. S., Berl, M. M., Moore, E. N., & Gaillard, W. D. (2008). Pediatric functional magnetic resonance imaging (fMRI): Issues and applications. Journal of Child Neurology, 23(7), 791–801.CrossRefPubMedGoogle Scholar
  75. Perlman, S. B., Luna, B., Hein, T. C., & Huppert, T. J. (2014). fNIRS evidence of prefrontal regulation of frustration in early childhood. NeuroImage, 85(Pt 1), 326–334.CrossRefPubMedGoogle Scholar
  76. Pincham, H. L., Matejko, A. A., Obersteiner, A., Killikelly, C., Abrahao, K. P., Benavides-Varela, S., … Vuillier, L. (2014). Forging a new path for Educational Neuroscience: An international young-researcher perspective on combining neuroscience and educational practices. Trends in Neuroscience and Education, 3(1), 28–31.Google Scholar
  77. Posse, S., Otazo, R., Dager, S. R., & Alger, J. (2013). MR spectroscopic imaging: Principles and recent advances. Journal of Magnetic Resonance Imaging, 37(6), 1301–1325.CrossRefPubMedGoogle Scholar
  78. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 2142–2154.CrossRefPubMedGoogle Scholar
  79. Prastawa, M., Gilmore, J. H., Lin, W., & Gerig, G. (2005). Automatic segmentation of MR images of the developing newborn brain. Medical Image Analysis, 9(5), 457–466.CrossRefPubMedGoogle Scholar
  80. Raizada, R. D. S., Richards, T. L., Meltzoff, A., & Kuhl, P. K. (2008). Socioeconomic status predicts hemispheric specialisation of the left inferior frontal gyrus in young children. NeuroImage, 40(3), 1392–1401.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Restivo, L., Ferrari, F., Passino, E., Sgobio, C., Bock, J., Oostra, B. A., … Ammassari-Teule, M. (2005). Enriched environment promotes behavioral and morphological recovery in a mouse model for the fragile X syndrome. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11557–62.Google Scholar
  82. Rueda, M. R., Rothbart, M. K., McCandliss, B. D., Saccomanno, L., & Posner, M. I. (2005). Training, maturation, and genetic influences on the development of executive attention. Proceedings of the National Academy of Sciences of the United States of America, 102(41), 14931–14936.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Saygin, Z. M., Norton, E. S., Osher, D. E., Beach, S. D., Cyr, A. B., Ozernov-Palchik, O., … Gabrieli, J. D. E. (2013). Tracking the roots of reading ability: White matter volume and integrity correlate with phonological awareness in prereading and early-reading kindergarten children. The Journal of Neuroscience, 33(33), 13251–8.Google Scholar
  84. Schertz, H. H., Baker, C., Hurwitz, S., & Benner, L. (2010). Principles of early intervention reflected in toddler research in autism spectrum disorders. Topics in Early Childhood Special Education, 31(1), 4–21.CrossRefGoogle Scholar
  85. Scholz, J., Klein, M. C., Behrens, T. E. J., & Johansen-Berg, H. (2009). Training induces changes in white-matter architecture. Nature Neuroscience, 12(11), 1370–1371.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Schumann, C. M., Barnes, C. C., Lord, C., & Courchesne, E. (2009). Amygdala enlargement in toddlers with autism related to severity of social and communication impairments. Biological Psychiatry, 66(10), 942–949.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Schumann, C. M., Bloss, C. S., Barnes, C. C., Wideman, G. M., Carper, R. A., Akshoomoff, N., … Courchesne, E. (2010). Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. The Journal of Neuroscience, 30(12), 4419–27.Google Scholar
  88. Shaw, P., Eckstrand, K., Sharp, W., Blumenthal, J., Lerch, J. P., Greenstein, D., … Rapoport, J. L. (2007). Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proceedings of the National Academy of Sciences of the United States of America, 104(49), 19649–54.Google Scholar
  89. Short, S. J., Elison, J. T., Goldman, B. D., Styner, M., Gu, H., Connelly, M., … Gilmore, J. H. (2013). Associations between white matter microstructure and infants’ working memory. NeuroImage, 64, 156–66.Google Scholar
  90. Sigman, M., Peña, M., Goldin, A. P., & Ribeiro, S. (2014). Neuroscience and education: Prime time to build the bridge. Nature Neuroscience, 17(4), 497–502.CrossRefPubMedGoogle Scholar
  91. Simos, P. G., Fletcher, J. M., Denton, C., Sarkari, S., Billingsley-Marshall, R., & Papanicolaou, A. C. (2006). Magnetic source imaging studies of dyslexia interventions. Developmental Neuropsychology, 30(1), 591–611.CrossRefPubMedGoogle Scholar
  92. Simos, P. G., Fletcher, J. M., Sarkari, S., Billingsley, R. L., Denton, C., & Papanicolaou, A. C. (2007). Altering the brain circuits for reading through intervention: A magnetic source imaging study. Neuropsychology, 21(4), 485–496.CrossRefPubMedGoogle Scholar
  93. Slifer, K. J. (2013). A clinician’s guide to helping children cope and cooperate with medical care: An applied behavioral approach (p. 304). Baltimore, MD: JHU Press.Google Scholar
  94. Slifer, K. J., Koontz, K. L., & Cataldo, M. F. (2002). Operant-contingency-based preparation of children for functional magnetic resonance imaging. Journal of Applied Behavior Analysis, 35(2), 191–194.CrossRefPubMedPubMedCentralGoogle Scholar
  95. Smith, C. L., & Bell, M. A. (2010). Stability in infant frontal asymmetry as a predictor of toddlerhood internalizing and externalizing behaviors. Developmental Psychobiology, 52(2), 158–167.CrossRefPubMedPubMedCentralGoogle Scholar
  96. Theys, C., Wouters, J., & Ghesquière, P. (2014). Diffusion tensor imaging and resting-state functional MRI-scanning in 5- and 6-year-old children: Training protocol and motion assessment. PLoS ONE, 9(4), e94019.CrossRefPubMedPubMedCentralGoogle Scholar
  97. Tommerdahl, J. (2010). A model for bridging the gap between neuroscience and education. Oxford Review of Education, 36(1), 97–109.CrossRefGoogle Scholar
  98. Travis, K. E., Leonard, M. K., Brown, T. T., Hagler, D. J., Curran, M., Dale, A. M., … Halgren, E. (2011). Spatiotemporal neural dynamics of word understanding in 12- to 18-month-old-infants. Cerebral Cortex, 21(8), 1832–9.Google Scholar
  99. Van Dijk, K. R. A., Sabuncu, M. R., & Buckner, R. L. (2012). The influence of head motion on intrinsic functional connectivity MRI. NeuroImage, 59(1), 431–438.CrossRefPubMedGoogle Scholar
  100. Vanderwert, R. E., Marshall, P. J., Nelson, C. A., Zeanah, C. H., & Fox, N. A. (2010). Timing of intervention affects brain electrical activity in children exposed to severe psychosocial neglect. PLoS One, 5(7), e11415.CrossRefPubMedPubMedCentralGoogle Scholar
  101. Vanderwert, R. E., & Nelson, C. A. (2014). The use of near-infrared spectroscopy in the study of typical and atypical development. NeuroImage, 85, 264–271.CrossRefPubMedGoogle Scholar
  102. Varma, S., McCandliss, B. D., & Schwartz, D. L. (2008). Scientific and pragmatic challenges for bridging education and neuroscience. Educational Researcher, 37(3), 140–152.CrossRefGoogle Scholar
  103. Webb, S. J., Bernier, R., Henderson, H. A., Johnson, M. H., Jones, E. J. H., Lerner, M. D., … Westerfield, M. (2015). Guidelines and best practices for electrophysiological data collection, analysis and reporting in autism. Journal of Autism and Developmental Disorders, 45(2), 425–443.Google Scholar
  104. Weinstein, M., Ben-Sira, L., Levy, Y., Zachor, D. A., Ben Itzhak, E., Artzi, M., … Ben Bashat, D. (2011). Abnormal white matter integrity in young children with autism. Human Brain Mapping, 32(4), 534–43.Google Scholar
  105. Wheless, J. W., Castillo, E., Maggio, V., Kim, H. L., Breier, J. I., Simos, P. G., & Papanicolaou, A. C. (2004). Magnetoencephalography (MEG) and magnetic source imaging (MSI). The Neurologist, 10(3), 138–53.Google Scholar
  106. Wolff, J. J., Gu, H., Gerig, G., Elison, J. T., Styner, M., Gouttard, S., … Piven, J. (2012). Differences in white matter fiber tract development present from 6 to 24 months in infants with autism. The American Journal of Psychiatry, 169(6), 589–600.Google Scholar
  107. Wolff, J. J., Hazlett, H. C., Lightbody, A. A., Reiss, A. L., & Piven, J. (2013). Repetitive and self-injurious behaviors: Associations with caudate volume in autism and fragile X syndrome. Journal of Neurodevelopmental Disorders, 5(1), 12.CrossRefPubMedPubMedCentralGoogle Scholar
  108. Yendiki, A., Koldewyn, K., Kakunoori, S., Kanwisher, N., & Fischl, B. (2013). Spurious group differences due to head motion in a diffusion MRI study. NeuroImage, 88, 79–90.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Educational PsychologyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations