Bridging Deterministic P Systems and Conditional Grammars

  • Artiom Alhazov
  • Rudolf FreundEmail author
  • Sergey Verlan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9504)


We continue the line of research of deterministic parallel non-cooperative multiset rewriting with control. We here generalize control, i.e., rule applicability context conditions, from promoters and inhibitors, which are checking presence or absence of certain objects up to some bound, to regular and even stronger predicates, focusing on predicates over the multiplicity of one symbol at a time.


Simple Context Condition Multiset Languages General Statistical Context Agreement Rules Simulating Register Machines 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alhazov, A., Ciubotaru, C., Ivanov, S., Rogozhin, Y.: The family of languages generated by non-cooperative membrane systems. In: Gheorghe, M., Hinze, T., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) CMC 2010. LNCS, vol. 6501, pp. 65–80. Springer, Heidelberg (2010)Google Scholar
  2. 2.
    Alhazov, A., Freund, R.: Asynchronous and maximally parallel deterministic controlled non-cooperative P systems characterize NFIN and coNFIN. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds.) CMC 2012. LNCS, vol. 7762, pp. 101–111. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Alhazov, A., Freund, R.: Deterministic non-cooperative P systems with strong context conditions. In: 13th Brainstorming Week on Membrane Computing (2015, to appear)Google Scholar
  4. 4.
    Alhazov, A., Freund, R.: P Systems with toxic objects. In: [11], pp. 99–125Google Scholar
  5. 5.
    Alhazov, A., Freund, R.: Priorities, promoters and inhibitors in deterministic non-cooperative P systems. In: [11], pp. 86–98Google Scholar
  6. 6.
    Alhazov, A., Freund, R.: Small P systems defining non-semilinear sets. In: Adamatzky, A. (ed.) Automata, Universality, Computation. ECC, vol. 12, pp. 183–217. Springer, Heidelberg (2015)Google Scholar
  7. 7.
    Alhazov, A., Freund, R., Verlan, S.: Promoters and inhibitors in purely catalytic P systems. In: [11], pp. 126–138Google Scholar
  8. 8.
    Alhazov, A., Sburlan, D.: Ultimately confluent rewriting systems. Parallel multiset–rewriting with permitting or forbidding contexts. In: Mauri, G., Păun, Gh., Jesús Pérez-Jímenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 178–189. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Dassow, J., Păun, Gh.: Regulated Rewriting in Formal Language Theory. Monographs in Theoretical Computer Science. An EATCS Series, vol. 18. Springer, Heidelberg (1989)Google Scholar
  10. 10.
    Gheorghe, M., Păun, Gh., Pérez-Jiménez, M.J., Rozenberg, G.: Research frontiers of membrane computing: open problems and research topics. Int. J. Found. Comput. Sci. 24(5), 547–624 (2013)Google Scholar
  11. 11.
    Gheorghe, M., Rozenberg, G., Salomaa, A., Sosík, P., Zandron, C. (eds.): CMC 2014. LNCS, vol. 8961. Springer, Heidelberg (2014)zbMATHGoogle Scholar
  12. 12.
    Ionescu, M., Sburlan, D.: On P systems with promoters/inhibitors. J. Univers. Comput. Sci. 10(5), 581–599 (2004)MathSciNetGoogle Scholar
  13. 13.
    Klejn, H.C.M., Rozenberg, G.: A study in parallel rewriting systems. Inf. Control 44, 134–163 (1980)CrossRefGoogle Scholar
  14. 14.
    Păun, Gh.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000). and Turku Center for Computer Science-TUCS Report 208, November 1998,
  15. 15.
    Păun, Gh.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)Google Scholar
  16. 16.
    Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press, New York (2010)Google Scholar
  17. 17.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 3. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  18. 18.
    Sburlan, D.: Further results on P systems with promoters/inhibitors. Int. J. Found. Comput. Sci. 17(1), 205–221 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    The P Systems Website:

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Mathematics and Computer ScienceAcademy of Sciences of MoldovaChişinăuMoldova
  2. 2.Faculty of InformaticsTU WienViennaAustria
  3. 3.LACL, Département InformatiqueUniversité Paris EstCréteilFrance

Personalised recommendations