Advertisement

Tissue P Systems Can be Simulated Efficiently with Counting Oracles

  • Alberto Leporati
  • Luca Manzoni
  • Giancarlo Mauri
  • Antonio E. Porreca
  • Claudio ZandronEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9504)

Abstract

We prove that polynomial-time tissue P systems with cell division or cell separation can be simulated efficiently by Turing machines with oracles for counting problems. This shows that the corresponding complexity classes are included in \(\mathbf{P }^{\varvec{\#}\mathbf{P }}\), thus improving, under standard complexity theory assumptions, the previously known upper bound \(\mathbf{PSPACE }\).

Keywords

Elementary Active Membranes Confluent Tissue Communication Rules Separation Rules Communication Table 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alhazov, A., Martín-Vide, C., Pan, L.: Solving a PSPACE-complete problem by recognizing P systems with restricted active membranes. Fundamenta Informaticae 58(2), 67–77 (2003)MathSciNetGoogle Scholar
  2. 2.
    Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Membrane division, oracles, and the counting hierarchy. Fundamenta Informaticae 138(1–2), 97–111 (2015)MathSciNetGoogle Scholar
  3. 3.
    Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Simulating elementary active membranes with an application to the P conjecture. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Sosík, P., Zandron, C. (eds.) CMC 2014. LNCS, vol. 8961, pp. 284–299. Springer, Heidelberg (2014)Google Scholar
  4. 4.
    Martín-Vide, C., Paun, G., Pazos, J., Rodríguez-Patón, A.: Tissue P systems. Theoret. Comput. Sci. 296(2), 295–326 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Murphy, N., Woods, D.: The computational power of membrane systems under tight uniformity conditions. Nat. Comput. 10(1), 613–632 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Pan, L., Pérez-Jiménez, M.J.: Computational complexity of tissue-like P systems. J. Complex. 26(3), 296–315 (2010)zbMATHCrossRefGoogle Scholar
  7. 7.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading, Massachussets (1993)Google Scholar
  8. 8.
    Pérez-Jiménez, M.J.: The P versus NP problem from the membrane computing view. Eur. Rev. 22(01), 18–33 (2014)CrossRefGoogle Scholar
  9. 9.
    Paun, G., Pérez-Jiménez, M.J., Riscos Núñez, A.: Tissue P systems with cell division. Int. J. Comput. Commun. Control 3(3), 295–303 (2008)Google Scholar
  10. 10.
    Sosík, P., Cienciala, L.: Computational power of cell separation in tissue P systems. Inf. Sci. 279, 805–815 (2014)CrossRefGoogle Scholar
  11. 11.
    Sosík, P., Cienciala, L.: A limitation of cell division in tissue P systems by PSPACE. J. Comput. Syst. Sci. 81(2), 473–484 (2015)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alberto Leporati
    • 1
  • Luca Manzoni
    • 1
  • Giancarlo Mauri
    • 1
  • Antonio E. Porreca
    • 1
  • Claudio Zandron
    • 1
    Email author
  1. 1.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità degli Studi di Milano-BicoccaMilanoItaly

Personalised recommendations