Membrane Computing Meets Temperature: A Thermoreceptor Model as Molecular Slide Rule with Evolutionary Potential

  • Thomas HinzeEmail author
  • Korcan Kirkici
  • Patricia Sauer
  • Peter Sauer
  • Jörn Behre
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9504)


Temperature represents an elementary environmental stimulus crucial for survival and fitness of organisms. Molecular membrane-based mechanisms for temperature sensing and behavioral response seem to be among the oldest principles of biological information processing. It is believed that some archaea – early microbes prior to bacteria and eukaryotes – developed thermoreceptors. In addition, they were able to maintain a circadian clock, a biochemical oscillatory system whose periodicity reflects a daily rhythm. Both features on their own, but especially their combination, gives raise for effective evolutionary advantage. Along with the notion of applied systems biology, we explore capabilities of resulting reaction models by exploitation of deterministic P modules and their dynamical coupling by means of simulation studies. Our findings indicate that a minimalistic circadian clock equipped with a chemical temperature sensor enables robust and practicable entrainment to an external daily temperature rhythm induced by the sun in contrast to a clock variant without thermoreceptor. Having a more adaptable circadian clock, archaea comprise better preconditions to populate larger oceanic regions from the equator towards the poles. From a modelling point of view, we incorporate the global quantity temperature and its effect on reaction velocity according to Arrhenius’ equation into the framework of deterministic P modules.


Circadian Clock Period Length Phase Lock Loop Transient Receptor Potential Channel Temperature Compensation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Barbagallo, B., Garrity, P.A.: Temperature sensation in Drosophila. Curr. Opin. Neurobiol. 34, 8–13 (2015)CrossRefGoogle Scholar
  2. 2.
    Belousov, B.P.: A periodic reaction and its mechanism. Compilation Abstr. Radiat. Med. 145, 147 (1959)Google Scholar
  3. 3.
    Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Chichester (2008)zbMATHCrossRefGoogle Scholar
  4. 4.
    Dvornyk, V., Vinogradova, O., Nevo, E.: Origin and evolution of circadian clock genes in prokaryotes. PNAS 100(5), 2495–2500 (2003)CrossRefGoogle Scholar
  5. 5.
    Gibson, D.G., Glass, J.I., Lartigue, C., et al.: Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52–56 (2010)CrossRefGoogle Scholar
  6. 6.
    Gierloff-Emden, H.-G.: Lehrbuch der allgemeinen Geographie. deGruyter, New York (1979)Google Scholar
  7. 7.
    Glaser, R.: Biophysics. An Introduction. Springer, Heidelberg (2012)Google Scholar
  8. 8.
    Goodwin, B.C.: Oscillatory behaviour in enzymatic control processes. Adv. Enzyme Regul. 3, 425–438 (1965)CrossRefGoogle Scholar
  9. 9.
    Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W.: From molecular to modular cell biology. Nature 402, 47–52 (1999)CrossRefGoogle Scholar
  10. 10.
    Heiland, I., Bodenstein, C., Hinze, T., Weisheit, O., Ebenhöh, O., Mittag, M., Schuster, S.: Modeling temperature entrainment of circadian clocks using the Arrhenius equation and a reconstructed model from Chlamydomonas reinhardtii. J. Biol. Phys. 38, 449–464 (2012)CrossRefGoogle Scholar
  11. 11.
    Hinze, T., Bodenstein, C., Schau, B., Heiland, I., Schuster, S.: Chemical analog computers for clock frequency control based on P modules. In: Gheorghe, M., Paun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 182–202. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Hinze, T., Schell, B., Schumann, M., Bodenstein, C.: Maintenance of chronobiological information by P system mediated assembly of control units for oscillatory waveforms and frequency. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds.) CMC 2012. LNCS, vol. 7762, pp. 208–227. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Hinze, T.: Unraveling oscillating structures by means of P systems. In: Gheorghe, M., et al. (eds.) Research Frontiers of Membrane Computing: Open Problems and Research Topics. Int. J. Found. Comput. Sci. 24(5), 547–623 (2013)Google Scholar
  14. 14.
    Hinze, T., et al.: Membrane systems and tools combining dynamical structures with reaction kinetics for applications in chronobiology. In: Frisco, P., Gheorghe, M., Perez-Jimenez, M.J. (eds.) Applications of Membrane Computing in Systems and Synthetic Biology. Series Emergence, Complexity, and Computation, vol. 7, pp. 133–173. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  15. 15.
    Harootunian, A.T., Kao, J.P.Y., Paranjape, S., Tsien, R.Y.: Generation of calcium oscillations in fibroblasts by positive feedback between calcium and IP\(_{3}\). Science 251, 75–78 (1991)CrossRefGoogle Scholar
  16. 16.
    Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., Kummer, U.: COPASI-a COmplex PAthway SImulator. Bioinformatics 22(24), 3067–3074 (2006)CrossRefGoogle Scholar
  17. 17.
    Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Networks 14(6), 1569–1572 (2003)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Johnson, C.H., Golden, S.S., Ishiura, M., Kondo, T.: Circadian clocks in prokaryotes. Mol. Microbiol. 21(1), 5–11 (1996)CrossRefGoogle Scholar
  19. 19.
    Klipp, E., Herwig, R., Kowald, A., Wierling, C., Lehrach, H.: Systems Biology in Practice. Wiley, Chichester (2008)Google Scholar
  20. 20.
    Lumpkin, E.A., Caterina, M.J.: Mechanisms of sensory transduction in the skin. Nature 445, 858–865 (2007)CrossRefGoogle Scholar
  21. 21.
    Lynch, S.: Dynamical Systems with Applications Using MatLab. Birkhäuser, Basel (2004)zbMATHCrossRefGoogle Scholar
  22. 22.
    Nishiyama, S., Ohno, S., Ohta, N., Inoue, Y., Fukuoka, H., Ishijima, A., Kawagishi, I.: Thermosensing function of the Echerichia coli redox sensor Aer. J. Bacteriol. 192(6), 1740–1743 (2010)CrossRefGoogle Scholar
  23. 23.
    Paster, E., Ryu, W.S.: The thermal impulse response of Escherichia coli. PNAS 105(14), 5373–5377 (2008)CrossRefGoogle Scholar
  24. 24.
    Paun, G.: Membrane Computing: An Introduction. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. 25.
    Romanovsky, A.A.: Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R37–R46 (2007)CrossRefGoogle Scholar
  26. 26.
    Ruoff, P.: Introducing temperature-compensation in any reaction kinetic oscillator model. J. Interdiscipl. Cycle Res. 23(2), 92–99 (1992)CrossRefGoogle Scholar
  27. 27.
    Sengupta, P., Garrity, P.: Sensing temperature. Curr. Biol. 23(8), R304 (2012)CrossRefGoogle Scholar
  28. 28.
    Sharma, V.K., Joshi, A.: Clocks, genes, and evolution. The evolution of circadian organization. In: Kumar, V. (ed.) Biological Rhythms, pp. 5–23. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  29. 29.
    Viana, F., Pena, E., Belmonte, C.: Specificity of cold thermotransduction is determined by differential ionic channel expression. Nat. Neurosci. 5(3), 254–260 (2002)CrossRefGoogle Scholar
  30. 30.
    Whitehead, K., Pan, M., Masumura, K., Bonneau, R., Baliga, N.S.: Diurnally entrained anticipatory behavior in archaea. PLoS One 4(5), e5485 (2009)CrossRefGoogle Scholar
  31. 31.
    Zhabotinsky, A.M.: Periodic processes of malonic acid oxidation in a liquid phase. Biofizika 9, 306–311 (1964)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Thomas Hinze
    • 1
    • 2
    Email author
  • Korcan Kirkici
    • 3
  • Patricia Sauer
    • 1
  • Peter Sauer
    • 1
  • Jörn Behre
    • 4
  1. 1.Institute of Computer Science and Information and Media TechnologyBrandenburg University of TechnologyCottbusGermany
  2. 2.Friedrich Schiller University JenaJenaGermany
  3. 3.Center for Information Services and High Performance ComputingDresden University of TechnologyDresdenGermany
  4. 4.Theoretical Systems BiologyInstitute of Food ResearchNorwichUK

Personalised recommendations