Exact and Approximation Algorithms for Data Mule Scheduling in a Sensor Network

  • Gui CitovskyEmail author
  • Jie Gao
  • Joseph S. B. Mitchell
  • Jiemin Zeng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9536)


We consider the fundamental problem of scheduling data mules for managing a wireless sensor network. A data mule tours around a sensor network and can help with network maintenance such as data collection and battery recharging/replacement. We assume that each sensor has a fixed data generation rate and a capacity (upper bound on storage size). If the data mule arrives after the storage capacity is met, additional data generated is lost. In this paper we formulate several fundamental problems for the best schedule of single or multiple data mules and provide algorithms with provable performance. First, we consider using a single data mule to collect data from sensors, and we aim to maximize the data collection rate. We then generalize this model to consider k data mules. Additionally, we study the problem of minimizing the number of data mules such that it is possible for them to collect all data, without loss. For the above problems, when we assume that the capacities of all sensors are the same, we provide exact algorithms for special cases and constant-factor approximation algorithms for more general cases. We also show that several of these problems are NP-hard. When we allow sensor capacities to differ, we have a constant-factor approximation for each of the aforementioned problems when the ratio of the maximum capacity to the minimum capacity is constant.


Sensor Network Sensor Node Schedule Problem Mobile Node Vehicle Route Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    National traveling salesman problems. Accessed 15 Dec 2014
  2. 2.
    Almi’ani, K., Viglas, A., Libman, L.: Tour and path planning methods for efficient data gathering using mobile elements. Int. J. Ad Hoc Ubiquitous Comput. (2014)Google Scholar
  3. 3.
    Anastasi, G., Conti, M., Di Francesco, M.: Data collection in sensor networks with data mules: an integrated simulation analysis. In: IEEE Symposium on Computers and Communications, ISCC 2008, pp. 1096–1102, July 2008Google Scholar
  4. 4.
    Archer, A., Bateni, M., Hajiaghayi, M., Karloff, H.: Improved approximation algorithms for prize-collecting steiner tree and tsp. SIAM J. Comput. 40(2), 309–332 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Archetti, C., Speranza, M., Vigo, D.: Vehicle routing problems with profits. Technical report WPDEM2013/3, University of Brescia (2013)Google Scholar
  6. 6.
    Arkin, E., Mitchell, J.S.B., Narasimhan, G.: Resource-constrained geometric network optimization. In: Symposium on Computational Geometry, pp. 307–316 (1998)Google Scholar
  7. 7.
    Arkin, E.M., Hassin, R., Levin, A.: Approximations for minimum and min-max vehicle routing problems. J. Algorithms 59(1), 1–18 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Ausiello, G., Bonifaci, V., Laura, L.: The online prize-collecting traveling salesman problem. Inf. Process. Lett. 107(6), 199–204 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Ausiello, G., Leonardi, S., Marchetti-Spaccamela, A.: On salesmen, repairmen, spiders, and other traveling agents. In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 1–16. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Awerbuch, B., Azar, Y., Blum, A., Vempala, S.: Improved approximation guarantees for minimum-weight k-trees and prize-collecting salesmen. SIAM J. Comput. 277–283 (1995)Google Scholar
  11. 11.
    Balas, E.: The prize collecting traveling salesman problem. Networks 19(6), 621–636 (1989)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Bansal, N., Blum, A., Chawla, S., Meyerson, A.: Approximation algorithms for deadline-tsp and vehicle routing with time-windows. In: Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing, STOC 2004, pp. 166–174. ACM, New York (2004)Google Scholar
  13. 13.
    Bienstock, D., Goemans, M.X., Simchi-Levi, D., Williamson, D.: A note on the prize collecting traveling salesman problem. Math. Program. 59(1), 413–420 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Blum, A., Chawla, S., Karger, D., Lane, T., Meyerson, A., Minkoff, M.: Approximation algorithms for orienteering and discounted-reward tsp. In: Proceedings of 44th Annual IEEE Symposium on Foundations of Computer Science, pp. 46–55, Oct 2003Google Scholar
  15. 15.
    Chekuri, C., Korula, N., Pál, M.: Improved algorithms for orienteering and related problems. ACM Trans. Algorithms 8(3), 23:1–23:27 (2012)CrossRefGoogle Scholar
  16. 16.
    Chen, K., Har-Peled, S.: The euclidean orienteering problem revisited. SIAM J. Comput. 38(1), 385–397 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Coene, S., Spieksma, F.C.R.: Profit-based latency problems on the line. Oper. Res. Lett. 36(3), 333–337 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Eksioglu, B., Vural, A.V., Reisman, A.: Survey: the vehicle routing problem: a taxonomic review. Comput. Ind. Eng. 57(4), 1472–1483 (2009)CrossRefGoogle Scholar
  19. 19.
    Even, G., Garg, N., Könemann, J., Ravi, R., Sinha, A.: Covering graphs using trees and stars. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM/APPROX 2003. LNCS, vol. 2764, pp. 24–35. Springer, Heidelberg (2003)Google Scholar
  20. 20.
    Feillet, D., Dejax, P., Gendreau, M.: Traveling salesman problems with profits. Transp. Sci. 39(2), 188–205 (2005)CrossRefGoogle Scholar
  21. 21.
    Golden, B.L., Levy, L., Vohra, R.: The orienteering problem. Naval Res. Logistics 34, 307–318 (1987)zbMATHCrossRefGoogle Scholar
  22. 22.
    Grossglauser, M., Tse, D.: Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Trans. Netw. 10(4), 477–486 (2002)CrossRefGoogle Scholar
  23. 23.
    Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Trans. Inf. Theory 46(2), 388–404 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Hochbaum, D.S., Pathria, A.: Analysis of the greedy approach in problems of maximum \(k\)-coverage. Naval Res. Logistics 45(6), 615–627 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Jea, D., Somasundara, A., Srivastava, M.: Multiple controlled mobile elements (data mules) for data collection in sensor networks. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 244–257. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Kansal, A., Rahimi, M., Kaiser, W.J., Srivastava, M.B., Pottie, G.J., Estrin, D.: Controlled mobility for sustainable wireless networks. In: IEEE Sensor and Ad Hoc Communications and Networks (SECON 2004) (2004)Google Scholar
  27. 27.
    Khani, M.R., Salavatipour, M.R.: Improved approximation algorithms for the min-max tree cover and bounded tree cover problems. Algorithmica 69(2), 443–460 (2014)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Kim, D., Uma, R., Abay, B., Wu, W., Wang, W., Tokuta, A.: Minimum latency multiple data mule trajectory planning in wireless sensor networks. IEEE Trans. Mob. Comput. 13(4), 838–851 (2014)CrossRefGoogle Scholar
  29. 29.
    Laporte, G.: The vehicle routing problem: an overview of exact and approximate algorithms. Eur. J. Oper. Res. 59(3), 345–358 (1992)zbMATHCrossRefGoogle Scholar
  30. 30.
    Ma, M., Yang, Y.: Data gathering in wireless sensor networks with mobile collectors. In: IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2008, pp. 1–9. IEEE (2008)Google Scholar
  31. 31.
    Nagarajan, V., Ravi, R.: Approximation algorithms for distance constrained vehicle routing problems. Networks 59(2), 209–214 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Pillac, V., Gendreau, M., Guéret, C., Medaglia, A.L.: A review of dynamic vehicle routing problems. Eur. J. Oper. Res. 255(1), 1–11 (2013)CrossRefGoogle Scholar
  33. 33.
    Shah, R.C., Roy, S., Jain, S., Brunette, W.: Data mules: modeling a three-tier architecture for sparse sensor networks. In: IEEE SNPA Workshop, pp. 30–41 (2003)Google Scholar
  34. 34.
    Somasundara, A., Kansal, A., Jea, D., Estrin, D., Srivastava, M.: Controllably mobile infrastructure for low energy embedded networks. IEEE Trans. Mob. Comput. 5(8), 958–973 (2006)CrossRefGoogle Scholar
  35. 35.
    Somasundara, A.A., Ramamoorthy, A., Srivastava, M.B.: Mobile element scheduling with dynamic deadlines. IEEE Trans. Mob. Comput. 6(4), 395–410 (2007)CrossRefGoogle Scholar
  36. 36.
    Vansteenwegen, P., Souffriau, W., Oudheusden, D.V.: The orienteering problem: a survey. Eur. J. Oper. Res. 209(1), 1–10 (2011)zbMATHCrossRefGoogle Scholar
  37. 37.
    Vincze, Z., Vida, R.: Multi-hop wireless sensor networks with mobile sink. In: CoNEXT 2005: Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, pp. 302–303. ACM Press, New York (2005)Google Scholar
  38. 38.
    Wu, F.J., Tseng, Y.C.: Energy-conserving data gathering by mobile mules in a spatially separated wireless sensor network. Wirel. Commun. Mob. Comput. 13(15), 1369–1385 (2013)Google Scholar
  39. 39.
    Yu, W., Liu, Z.: Vehicle routing problems with regular objective functions on a path. Naval Res. Logistics (NRL) 61(1), 34–43 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Gui Citovsky
    • 1
    Email author
  • Jie Gao
    • 1
  • Joseph S. B. Mitchell
    • 1
  • Jiemin Zeng
    • 1
  1. 1.Stony Brook UniversityStony BrookUSA

Personalised recommendations