Mobile Agents Rendezvous in Spite of a Malicious Agent

  • Shantanu Das
  • Flaminia L. LuccioEmail author
  • Euripides Markou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9536)


We examine the problem of rendezvous, i.e., having multiple mobile agents gather in a single node of the network. Unlike previous studies, we need to achieve rendezvous in presence of a very powerful adversary, a malicious agent that moves through the network and tries to block the honest agents and prevents them from gathering. The malicious agent can be thought of as a mobile fault in the network. The malicious agent is assumed to be arbitrarily fast, has full knowledge of the network and it cannot be exterminated by the honest agents. On the other hand, the honest agents are assumed to be quite weak: They are asynchronous and anonymous, they have only finite memory, they have no prior knowledge of the network and they can communicate with the other agents only when they meet at a node. Can the honest agents achieve rendezvous starting from an arbitrary configuration in spite of the malicious agent? We present some necessary conditions for solving rendezvous in spite of the malicious agent in arbitrary networks. We then focus on the ring and mesh topologies and provide algorithms to solve rendezvous. For ring networks, our algorithms solve rendezvous in all feasible instances of the problem, while we show that rendezvous is impossible for an even number of agents in unoriented rings. For the oriented mesh networks, we prove that the problem can be solved when the honest agents initially form a connected configuration without holes if and only if they can see which are the occupied nodes within a two-hops distance. To the best of our knowledge, this is the first attempt to study such a powerful and mobile fault model, in the context of mobile agents. Our model lies between the more powerful but static fault model of black holes (which can even destroy the agents), and the less powerful but mobile fault model of Byzantine agents (which can only imitate the honest agents but can neither harm nor stop them).


Asynchronous Mobile agents Rendezvous problem Malicious agent 


  1. 1.
    Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM J. Comput. 36(1), 56–82 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Alpern, S., Gal, S.: Searching for an agent who may or may not want to be found. Oper. Res. 50(2), 311–323 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bampas, E., Leonardos, N., Markou, E., Pagourtzis, A., Petrolia, M.: Improved periodic data retrieval in asynchronous rings with a faulty host. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 355–370. Springer, Heidelberg (2014)Google Scholar
  4. 4.
    Barriere, L., Flocchini, P., Fomin, F.V., Fraigniaud, P., Nisse, N., Santoro, N., Thilikos, D.: Connected graph searching. Inf. Comput. 219, 1–16 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Bouzid, Z., Das, S., Tixeuil, S.: Gathering of mobile robots tolerating multiple crash faults. In: IEEE 33rd International Conference on Distributed Computing Systems, ICDCS 2013, 8–11 July 2013, Philadelphia, Pennsylvania, USA, pp. 337–346 (2013)Google Scholar
  6. 6.
    Chalopin, J., Das, S.: Rendezvous of mobile agents without agreement on local orientation. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 515–526. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Chalopin, J., Das, S., Santoro, N.: Rendezvous of mobile agents in unknown graphs with faulty links. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 108–122. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Chalopin, J., Dieudonné, Y., Labourel, A., Pelc, A.: Fault-tolerant rendezvous in networks. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 411–422. Springer, Heidelberg (2014)Google Scholar
  9. 9.
    Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate sensors and movements. SIAM J. Comput. 38, 276–302 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Czyzowicz, J., Labourel, A., Pelc, A.: How to meet asynchronously (almost) everywhere. In: Proceedings of 21st Annual ACM-SIAM Symposium on Discrete Algorithms (2010)Google Scholar
  11. 11.
    Das, S., Mihalák, M., Šrámek, R., Vicari, E., Widmayer, P.: Rendezvous of mobile agents when tokens fail anytime. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 463–480. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Dieudonne, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Trans. Algorithms 11(1), 1 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Multiple agents rendezvous in a ring in spite of a black hole. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS 2003. LNCS, vol. 3144, pp. 34–46. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Mobile search for a black hole in an anonymous ring. Algorithmica 48(1), 67–90 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Flocchini, P., Huang, M.J., Luccio, F.L.: Decontamination of chordal rings and tori using mobile agents. Int. J. Found. Comput. Sci. 3(18), 547–564 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Flocchini, P., Huang, M.J., Luccio, F.L.: Decontamination of hypercubes by mobile agents. Networks 3(52), 167–178 (2008)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Flocchini, P., Ilcinkas, D., Santoro, N.: Ping pong in dangerous graphs: optimal black hole search with pebbles. Algorithmica 62(3–4), 1006–1033 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Flocchini, P., Santoro, N.: Distributed security algorithms for mobile agents. In: Cao, J., Das, S.K. (eds.) Mobile Agents in Networking and Distributed Computing, Chap. 3, pp. 41–70. Wiley, Hoboken (2012)CrossRefGoogle Scholar
  19. 19.
    Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Hardness and approximation results for black hole search in arbitrary graphs. TCS 384(2–3), 201–221 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Královič, R., Miklík, S.: Periodic data retrieval problem in rings containing a malicious host. In: Patt-Shamir, B., Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 157–167. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Kranakis, E., Krizanc, D., Markou, E.: The Mobile Agent Rendezvous Problem in the Ring. Synthesis Lectures on Distributed Computing Theory. Morgan and Claypool Publishers, San Rafael (2010)Google Scholar
  22. 22.
    Luccio, F.L.: Contiguous search problem in sierpinski graphs. Theory Comput. Syst. 44, 186–204 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Yamauchi, Y., Izumi, T., Kamei, S.: Mobile agent rendezvous on a probabilistic edge evolving ring. In: ICNC, pp. 103–112 (2012)Google Scholar
  24. 24.
    Yu, X., Yung, M.: Agent rendezvous: a dynamic symmetry-breaking problem. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 610–621. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  25. 25.
    Zeng, Y., Hu, X., Shin, K.: Detection of botnets using combined host- and network-level information. In: IEEE/IFIP DSN 2010, pp. 291–300, June 2010Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Shantanu Das
    • 1
  • Flaminia L. Luccio
    • 2
    Email author
  • Euripides Markou
    • 3
  1. 1.LIFAix-Marseille UniversityMarseilleFrance
  2. 2.DAISUniversità Ca’ Foscari VeneziaVeneziaItaly
  3. 3.DIBUniversity of ThessalyLamiaGreece

Personalised recommendations