Advertisement

Mutual Visibility with an Optimal Number of Colors

  • Gokarna SharmaEmail author
  • Costas Busch
  • Supratik Mukhopadhyay
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9536)

Abstract

We consider the following fundamental Mutual Visibility problem: Given a set of n identical autonomous point robots in arbitrary distinct positions in the Euclidean plane, find a schedule to move them such that within finite time they reach, without collisions, a configuration in which they all see each other. The robots operate following Look-Compute-Move cycles and a robot \(r_i\) can not see other robot \(r_j\) if there lies a third robot \(r_l\) in the line segment connecting the positions of \(r_i\) and \(r_j\). Moreover, n is not assumed to be known to the robots. We study this problem in the robots with lights model, where each robot has an externally visible persistent light which can assume colors from a fixed set of colors and the color set is identical to all the robots. This model corresponds to the classical model of oblivious robots when the number of colors \(c=1\) in the color set. Therefore, we focus here on the objective of minimizing the number of colors required to successfully solve Mutual Visibility. Di Luna et al. [16] presented two algorithms and showed that Mutual Visibility can always be solved without collisions with \(c=3\) colors for both semi-synchronous and asynchronous robots under both rigid and non-rigid moves. In this paper, we present and analyze an improved algorithm which requires only \(c=2\) colors and works for both semi-synchronous and asynchronous robots under both rigid and non-rigid moves; this is optimal since any algorithm for Mutual Visibility needs at least 2 colors in the robots with lights model, when n is not known. We employ a non-trivial technique which moves all the interior robots first to the boundary of the initial convex hull and then the robots in the boundary of the hull (except the corners) to outside of the hull until all the robots eventually become corners, without the need of any third color. Our result is interesting in the sense that asynchronicity and non-rigidity of robot movements have no effect on Mutual Visibility with respect to the number of colors needed to successfully solve it. We also provide an improved solution to the Circle Formation problem.

Keywords

Convex Hull Safe Zone Local View Light External Light Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Agathangelou, C., Georgiou, C., Mavronicolas, M.: A distributed algorithm for gathering many fat mobile robots in the plane. In: PODC, pp. 250–259 (2013)Google Scholar
  2. 2.
    Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. In: SODA, pp. 1070–1078 (2004)Google Scholar
  3. 3.
    Bolla, K., Kovacs, T., Fazekas, G.: Gathering of fat robots with limited visibility and without global navigation. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) EC 2012 and SIDE 2012. LNCS, vol. 7269, pp. 30–38. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Cohen, R., Peleg, D.: Local spreading algorithms for autonomous robot systems. Theor. Comput. Sci. 399(1–2), 71–82 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Cord-Landwehr, A., Degener, B., Fischer, M., Hüllmann, M., Kempkes, B., Klaas, A., Kling, P., Kurras, S., Märtens, M., auf der Heide, F.M., Raupach, C., Swierkot, K., Warner, D., Weddemann, C., Wonisch, D.: Collisionless gathering of robots with an extent. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 178–189. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Czyzowicz, J., Gasieniec, L., Pelc, A.: Gathering few fat mobile robots in the plane. Theor. Comput. Sci. 410(6–7), 481–499 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: The power of lights: synchronizing asynchronous robots using visible bits. In: ICDCS, pp. 506–515 (2012)Google Scholar
  8. 8.
    Défago, X., Souissi, S.: Non-uniform circle formation algorithm for oblivious mobile robots with convergence toward uniformity. Theor. Comput. Sci. 396(1–3), 97–112 (2008)zbMATHCrossRefGoogle Scholar
  9. 9.
    Dieudonné, Y., Labbani-Igbida, O., Petit, F.: Circle formation of weak mobile robots. TAAS 3(4), 16:1–16:20 (2008)CrossRefGoogle Scholar
  10. 10.
    Dutta, A., Gan Chaudhuri, S., Datta, S., Mukhopadhyaya, K.: Circle formation by asynchronous fat robots with limited visibility. In: Ramanujam, R., Ramaswamy, S. (eds.) ICDCIT 2012. LNCS, vol. 7154, pp. 83–93. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Efrima, A., Peleg, D.: Distributed models and algorithms for mobile robot systems. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 70–87. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by oblivious mobile robots. Synth. Lect. Distrib. Comput. Theory 3(2), 1–185 (2012)CrossRefGoogle Scholar
  13. 13.
    Flocchini, P., Prencipe, G., Santoro, N., Viglietta, G.: Distributed computing by mobile robots: solving the uniform circle formation problem. In: Aguilera, M.K., Querzoni, L., Shapiro, M. (eds.) OPODIS 2014. LNCS, vol. 8878, pp. 217–232. Springer, Heidelberg (2014)Google Scholar
  14. 14.
    Flocchini, P., Santoro, N., Viglietta, G., Yamashita, M.: Rendezvous of two robots with constant memory. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179, pp. 189–200. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Graham, R.L.: An efficient algorithm for determining the convex hull of a finite planar set. Inf. Process. Lett. 1(4), 132–133 (1972)zbMATHCrossRefGoogle Scholar
  16. 16.
    Luna, G.A.D., Flocchini, P., Chaudhuri, S.G., Poloni, F., Santoro, N., Viglietta, G.: Mutual visibility by luminous robots without collisions. To appear in Information and Computation (2015). arxiv.org/abs/1503.04347
  17. 17.
    Di Luna, G.A., Flocchini, P., Gan Chaudhuri, S., Santoro, N., Viglietta, G.: Robots with lights: overcoming obstructed visibility without colliding. In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 150–164. Springer, Heidelberg (2014)Google Scholar
  18. 18.
    Luna, G.A.D., Flocchini, P., Poloni, F., Santoro, N., Viglietta, G.: The mutual visibility problem for oblivious robots. In: CCCG (2014)Google Scholar
  19. 19.
    Peleg, D.: Distributed coordination algorithms for mobile robot swarms: new directions and challenges. In: Pal, A., Kshemkalyani, A.D., Kumar, R., Gupta, A. (eds.) IWDC 2005. LNCS, vol. 3741, pp. 1–12. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Vaidyanathan, R., Busch, C., Trahan, J.L., Sharma, G., Rai, S.: Logarithmic-time complete visibility for robots with lights. In: IPDPS, pp. 375–384 (2015)Google Scholar
  22. 22.
    Viglietta, G.: Rendezvous of two robots with visible bits. In: Flocchini, P., Gao, J., Kranakis, E., der Heide, F.M. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 286–301. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  23. 23.
    Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious anonymous mobile robots. Theor. Comput. Sci. 411(26–28), 2433–2453 (2010)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Gokarna Sharma
    • 1
    Email author
  • Costas Busch
    • 2
  • Supratik Mukhopadhyay
    • 2
  1. 1.Department of Computer ScienceKent State UniversityKentUSA
  2. 2.School of Electrical Engineering and Computer ScienceLouisiana State UniversityBaton RougeUSA

Personalised recommendations