Plane and Planarity Thresholds for Random Geometric Graphs

  • Ahmad BiniazEmail author
  • Evangelos Kranakis
  • Anil Maheshwari
  • Michiel Smid
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9536)


A random geometric graph, \(G(n,r)\), is formed by choosing n points independently and uniformly at random in a unit square; two points are connected by a straight-line edge if they are at Euclidean distance at most r. For a given constant k, we show that \(n^{\frac{-k}{2k-2}}\) is a distance threshold function for \(G(n,r)\) to have a connected subgraph on k points. Based on that, we show that \(n^{-2/3}\) is a distance threshold function for \(G(n,r)\) to be plane, and \(n^{-5/8}\) is a distance threshold function for \(G(n,r)\) to be planar.


  1. 1.
    Alon, N., Spencer, J.H.: The Probabilistic Method, 3rd edn. Wiley, New York (2007)Google Scholar
  2. 2.
    Appel, M.J.B., Russo, R.P.: The connectivity of a graph on uniform points on \([0,1]^d\). Stat. Prob. Lett. 60(4), 351–357 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Balister, P., Sarkar, A., Bollobás, B.: Percolation, connectivity, coverage and colouring of random geometric graphs. In: Bollobás, B., Kozma, R., Miklós, D. (eds.) Handbook of Large-Scale Random Networks, pp. 117–142. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Bollobás, B.: Random Graphs. Cambridge University Press, Cambridge (2001)zbMATHCrossRefGoogle Scholar
  5. 5.
    Bollobás, B., Thomason, A.: Threshold functions. Combinatorica 7(1), 35–38 (1987)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Bourgain, J., Kalai, G.: Threshold intervals under group symmetries. Convex Geom. Anal. MSRI Publ. 34, 59–63 (1998)MathSciNetGoogle Scholar
  7. 7.
    Bradonjić, M., Perkins, W.: On sharp thresholds in random geometric graphs. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM, pp. 500–514 (2014)Google Scholar
  8. 8.
    Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci. 5, 17–61 (1960)zbMATHGoogle Scholar
  9. 9.
    Friedgut, E., Kalai, G.: Every monotone graph property has a sharp threshold. Proc. Am. Math. Soc. 124(10), 2993–3002 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Gilbert, E.: Random graphs. Ann. Math. Stat. 30(4), 1141–1144 (1959)zbMATHCrossRefGoogle Scholar
  11. 11.
    Gilbert, E.: Random plane networks. J. Soc. Ind. Appl. Math. 9(4), 533–543 (1961)zbMATHCrossRefGoogle Scholar
  12. 12.
    Godehardt, E., Jaworski, J.: On the connectivity of a random interval graph. Random Struct. Algorithms 9(1–2), 137–161 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Goel, A., Rai, S., Krishnamachari, B.: Sharp thresholds for monotone properties in random geometric graphs. In: Proceedings of STOC, pp. 580–586. ACM (2004)Google Scholar
  14. 14.
    Gupta, P., Kumar, P.R.: Critical power for asymptotic connectivity in wireless networks. In: McEneaney, W.M., George Yin, G., Zhang, Q. (eds.) Stochastic Analysis, Control, Optimization and Applications, pp. 547–566. Springer, New York (1998)Google Scholar
  15. 15.
    Hall, P.: On the coverage of \( k \)-dimensional space by \( k \)-dimensional spheres. Ann. Prob. 13(3), 991–1002 (1985)zbMATHCrossRefGoogle Scholar
  16. 16.
    Janson, S.: Random coverings in several dimensions. Acta Mathematica 156(1), 83–118 (1986)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Krishnamachari, B., Wicker, S.B., Béjar, R., Pearlman, M.: Critical density thresholds in distributed wireless networks. In: Bhargava, V.K., Vincent Poor, H., Tarokh, V., Yoon, S. (eds.) Communications, Information and Network Security, vol. 712, pp. 279–296. Springer, USA (2002)Google Scholar
  18. 18.
    Mccolm, G.L.: Threshold functions for random graphs on a line segment. Comb. Prob. Comput. 13, 373–387 (2001)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Panchapakesan, P., Manjunath, D.: On the transmission range in dense ad hoc radio networks. In: Proceedings of IEEE Signal Processing Communication (SPCOM) (2001)Google Scholar
  20. 20.
    Penrose, M.D.: The longest edge of the random minimal spanning tree. Ann. Appl. Prob. 7(2), 340–361 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Penrose, M.D.: On \(k\)-connectivity for a geometric random graph. Random Struct. Algorithms 15(2), 145–164 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Penrose, M.D.: Random geometric graphs, vol. 5. Oxford University Press, Oxford (2003)zbMATHCrossRefGoogle Scholar
  23. 23.
    Spencer, J.H.: Ten Lectures on the Probabilistic Method, vol. 52. SIAM, Philadelphia (1987)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ahmad Biniaz
    • 1
    Email author
  • Evangelos Kranakis
    • 1
  • Anil Maheshwari
    • 1
  • Michiel Smid
    • 1
  1. 1.Carleton UniversityOttawaCanada

Personalised recommendations