International Workshop on Theorie and Applications of Formal Argumentation

Theory and Applications of Formal Argumentation pp 146-162 | Cite as

The Hidden Power of Abstract Argumentation Semantics

  • Thomas Linsbichler
  • Christof Spanring
  • Stefan Woltran
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9524)


Abstract argumentation plays an important role in many advanced AI formalisms. It is thus vital to understand the strengths and limits of the different semantics available. In this work, we contribute to this line of research and investigate two recently proposed properties: rejected arguments and implicit conflicts. Given an argumentation framework F, the former refers to arguments in F which do not occur in any extension of F; the latter refers to pairs of arguments which do not occur together in any extension of F despite not being linked in F’s attack relation. We consider four prominent semantics, viz. stable, preferred, semi-stable and stage and show that their expressive power relies on both properties. Among our results, we refute a recent conjecture by Baumann et al. on implicit conflicts.





This research has been supported by the Austrian Science Fund (FWF) through projects I1102 and P25521.


  1. 1.
    Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation semantics. Knowl. Eng. Rev. 26(4), 365–410 (2011)CrossRefGoogle Scholar
  2. 2.
    Baroni, P., Dunne, P.E., Giacomin, M.: On the resolution-based family of abstract argumentation semantics and its grounded instance. Artif. Intell. 175(3–4), 791–813 (2011)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Baroni, P., Giacomin, M.: On principle-based evaluation of extension-based argumentation semantics. Artif. Intell. 171(10–15), 675–700 (2007)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Baumann, R.: Splitting an argumentation framework. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 40–53. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Baumann, R., Dvořák, W., Linsbichler, T., Strass, H., Woltran, S.: Compact argumentation frameworks. In: Schaub, T., Friedrich, G., O’Sullivan, B. (eds.) Proceedings of the 21st European Conference on Artificial Intelligence (ECAI 2014). Frontiers in Artificial Intelligence and Applications, vol. 263, pp. 69–74. IOS Press (2014)Google Scholar
  6. 6.
    Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artif. Intell. 171(10–15), 619–641 (2007)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artif. Intell. 171(5–6), 286–310 (2007)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Caminada, M., Carnielli, W.A., Dunne, P.E.: Semi-stable semantics. J. Log. Comput. 22(5), 1207–1254 (2012)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Caminada, M., Gabbay, D.M.: A logical account of formal argumentation. Studia Logica 93(2), 109–145 (2009)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Cerutti, F., Dunne, P.E., Giacomin, M., Vallati, M.: Computing preferred extensions in abstract argumentation: a SAT-based approach. In: Black, E., Modgil, S., Oren, N. (eds.) TAFA 2013. LNCS, vol. 8306, pp. 176–193. Springer, Heidelberg (2014)Google Scholar
  11. 11.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–357 (1995)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Dunne, P.E., Dvořák, W., Linsbichler, T., Woltran, S.: Characteristics of multiple viewpoints in abstract argumentation. Artif. Intell. 228, 153–178 (2015)CrossRefGoogle Scholar
  13. 13.
    Dvorák, W., Järvisalo, M., Wallner, J.P., Woltran, S.: Complexity-sensitive decision procedures for abstract argumentation. Artif. Intell. 206, 53–78 (2014)CrossRefGoogle Scholar
  14. 14.
    Dvořák, W., Spanring, C.: Comparing the expressiveness of argumentation semantics. In: Verheij, B., Szeider, S., Woltran, S. (eds.) Proceedings of the 4th Conference on Computational Models of Argument (COMMA 2012). Frontiers in Artificial Intelligence and Applications, vol. 245, pp. 261–272. IOS Press (2012)Google Scholar
  15. 15.
    Dyrkolbotn, S.K.: How to argue for anything: Enforcing arbitrary sets of labellings using AFs. In: Baral, C., De Giacomo, G., Eiter, T. (eds.) Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR 2014), pp. 626–629. AAAI Press (2014)Google Scholar
  16. 16.
    Rahwan, I., Simari, G.R. (eds.): Argumentation in Artificial Intelligence. Springer, Heidelberg (2009)Google Scholar
  17. 17.
    Strass, H.: The relative expressiveness of abstract argumentation and logic programming. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI 2015), pp. 1625–1631 (2015)Google Scholar
  18. 18.
    Verheij, B.: Two approaches to dialectical argumentation: admissible sets and argumentation stages. In: Meyer, J.J.C., van der Gaag, L.C. (eds.) Proceedings of the 8th Dutch Conference on Artificial Intelligence (NAIC 1996), pp. 357–368 (1996)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Thomas Linsbichler
    • 1
  • Christof Spanring
    • 1
    • 2
  • Stefan Woltran
    • 1
  1. 1.TU WienViennaAustria
  2. 2.University of LiverpoolLiverpoolUK

Personalised recommendations