International Workshop on Theorie and Applications of Formal Argumentation

Theory and Applications of Formal Argumentation pp 194-210 | Cite as

ArgP2P: An Argumentative Approach for Intelligent Query Routing in P2P Networks

  • Ana L. Nicolini
  • Ana G. Maguitman
  • Carlos I. Chesñevar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9524)

Abstract

The Internet is a cooperative and decentralized network built out of millions of participants that share large amounts of information. Peer-to-peer (P2P) systems go hand-in-hand with this huge decentralized network, where each individual node can serve content as well as request it. In this scenario, thematic search algorithms should lead to and benefit from the emergence of semantic communities that are the result of the interaction among participants. As a consequence, intelligent algorithms for neighbor selection should give rise to a logical network topology reflecting efficient communication patterns. When routing queries within a P2P network different conflicting issues may arise in individual nodes, such as deciding whether to propagate a query or to reject its processing. Such issues emerge in the context of incomplete and potentially inconsistent information in a distributed setting. To the best of our knowledge, current algorithmic approaches to P2P query processing are mostly based on a “reactive” approach, endowing the individual nodes with little or no intelligence. This paper presents a novel approach to use argumentation as part of the decision making machinery within individual nodes in a P2P network for thematic search. Our approach will rely on assumption-based argumentation (ABA). We provide a formalization for P2P networks for thematic search, on top of which intelligent algorithms based on ABA are specified. A case study is used to illustrate the proposed approach, providing insights into the performance of the new framework.

Notes

Acknowledgments

This research was funded by CONICET (PIP 112-201201-00487 and PIP 112-201101-01000),Universidad Nacional del Sur (PGI-UNS 24/N029) and ANPCyT(PICT 2014-0624).

References

  1. 1.
    Akavipat, R., Wu, L.-S., Menczer, F., Maguitman, A.G.: Emerging semantic communities in peer web search. In: Proceedings of the International Workshop on Information Retrieval in Peer-to-Peer Networks, P2PIR 2006, pp. 1–8. ACM, New York, NY, USA (2006)Google Scholar
  2. 2.
    Amaury Matt, P., Toni, F.: Argumentation-based agents for eprocurementGoogle Scholar
  3. 3.
    Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distribution technologies. ACM Comput. Surv. (CSUR) 36(4), 335–371 (2004)CrossRefGoogle Scholar
  4. 4.
    Besnard, P., et al.: Towards argumentation-based contract negotiation. Comput. Models Argument: Proc. COMMA 172, 134 (2008)Google Scholar
  5. 5.
    Bondarenko, A., Toni, F., Kowalski, R.A.: An assumption-based framework for non-monotonic reasoning. LPNMR 93, 171–189 (1993)MathSciNetGoogle Scholar
  6. 6.
    Chen, H., Gong, Z., Huang, Z.: Self-learning routing in unstructured p2p network. Int. J. Inf. Technol. 11(12), 59–67 (2005)Google Scholar
  7. 7.
    Du, N., Wang, B., Wu, B.: Community detection in complex networks. J. Comput. Sci. Technol. 23, 672–683 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–357 (1995a)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77, 321–357 (1995b)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Dung, P.M., Kowalski, R.A., Toni, F.: Assumption-based argumentation. Argumentation in Artificial Intelligence, pp. 199–218. Springer, Heidelberg (2009)Google Scholar
  11. 11.
    Dung, P.M., Thang, P.M.: Towards an argument-based model of legal doctrines in common law of contracts. In: Proceedings, CLIMA IX, vol. 7 (2008)Google Scholar
  12. 12.
    García, A.J., Simari, G.R.: Defeasible logic programming: An argumentative approach. Theor. Pract. Logic Program. 4(1+2), 95–138 (2004)MATHCrossRefGoogle Scholar
  13. 13.
    Jin, X., Chan, S.-H.G.: Unstructured peer-to-peer network architectures. In Handbook of Peer-to-Peer Networking, pp. 117–142. Springer, Heidelberg (2010)Google Scholar
  14. 14.
    Kakas, K., Toni, F.: Computing argumentation in logic programming. J. Logic Comput. 9(4), 515–562 (1999)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Korzun, D., Gurtov, A.: Structured peer-to-peer systems: fundamentals of hierarchical organization, routing, scaling, and security. Springer Science & Business Media (2012)Google Scholar
  16. 16.
    Kowalski, R.A.: Using meta-logic to reconcile reactive with rational agents. Meta-logics and logic programming, pp. 227–242 (1995)Google Scholar
  17. 17.
    Kowalski, R.A., Toni, F.: Abstract argumentation. Artif. Intell. Law 4(3–4), 275–296 (1996)CrossRefGoogle Scholar
  18. 18.
    Nicolini, A.L., Lorenzetti, C.M., Maguitman, A.G., Chesñevar, C.I.: Intelligent algorithms for reducing query propagation in thematic p2p search. Anales del XIX Congreso Argentino de Ciencias de la Computación (CACIC), pp. 71–79. Mar del Plata, Buenos Aires, Argentina (2013)Google Scholar
  19. 19.
    Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. Proc. Natl. Acad. Sci. U.S. Am. 101(9), 2658–2663 (2004)CrossRefGoogle Scholar
  20. 20.
    Rosenfeld, A., Goldman, C.V., Kaminka, G.A., Kraus, S.: Phirst: A distributed architecture for P2P information retrieval. Inf. Syst. 34(2), 290–303 (2009)CrossRefGoogle Scholar
  21. 21.
    Schollmeier, R.: A definition of peer-to-peer networking for the classification of peer-to-peer architectures and applications. In: 2001 Proceedings of the First International Conference on Peer-to-Peer Computing, pp. 101–102 (2001)Google Scholar
  22. 22.
    Tang, C., Xu, Z., Dwarkadas, S.: Peer-to-Peer information retrieval using self-organizing semantic overlay networks. In: Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, SIGCOMM 2003, pp. 175–186. ACM, New York, NY, USA (2003)Google Scholar
  23. 23.
    Toni, F.: Assumption-based argumentation for selection and composition of services. In: Sadri, F., Satoh, K. (eds.) CLIMA VIII 2007. LNCS (LNAI), vol. 5056, pp. 231–247. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Toni, F.: A tutorial on assumption-based argumentation. Argument Comput. 5, 89–117 (2014)CrossRefGoogle Scholar
  25. 25.
    Toni, F., et al.: The ArguGRID platform: An overview. In: Altmann, J., Neumann, D., Fahringer, T. (eds.) GECON 2008. LNCS, vol. 5206, pp. 217–225. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Voulgaris, S., Kermarrec, A., Massouli, L., van Oteen, M.: Exploiting semantic proximity in peer-to-peer content searching. In: Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems, pp. 238–243. IEEE Computer Society, Washington, DC, USA (2004)Google Scholar
  27. 27.
    Wang, L.: Sofa: An expert-driven, self-organization peer-to-peer semantic communities for network resource management. Expert Syst. Appl. 38, 94–105 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ana L. Nicolini
    • 1
  • Ana G. Maguitman
    • 1
  • Carlos I. Chesñevar
    • 1
  1. 1.Institute for Computer Science and Engineering (ICIC)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del SurBahía BlancaArgentina

Personalised recommendations