Avocado as a Major Dietary Source of Antioxidants and Its Preventive Role in Neurodegenerative Diseases

  • Kalandar AmeerEmail author
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 12)


Avocados have a high content of phytochemicals especially antioxidants with potential neuroprotective effect. Aging is the major risk factor for neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases. A large body of evidence indicates that oxidative stress is involved in the pathophysiology of these diseases. Oxidative stress can induce neuronal damages and modulate intracellular signaling, ultimately leading to neuronal death by apoptosis or necrosis. There is evidence for increased oxidative damage to macromolecules in amyotrophic lateral sclerosis, Huntington’s disease, Parkinson’s disease, and Alzheimer’s disease. Thus, antioxidants have been used for their effectiveness in reducing these deleterious effects and neuronal death in many in vitro and in vivo studies. The critical review results indicate that compounds in avocado are unique antioxidants, preferentially suppressing radical generation, and thus may be promising as effective neuropreventive agents. The diverse array of bioactive nutrients present in avocado plays a pivotal role in the prevention and cure of various neurodegenerative diseases.


Avocado Neuron Alzheimer’s disease (AD) Antioxidants 


Compliance with Ethics Requirements

The author declares that he/she has no conflicts of interest.


  1. Acar A, Akil E, Alp H, et al. Oxidative damage is ameliorated by curcumin treatment in the brain and sciatic nerve of diabetic rats. Int J Neurosci. 2012;122(7):367–72.CrossRefPubMedGoogle Scholar
  2. ADA (American Dietetic Association). Position of the American Dietetic Association: functional foods. J Am Diet Assoc. 2009;109:735–46.CrossRefGoogle Scholar
  3. Alberti KG, Zimmer PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15(7):539–53.CrossRefPubMedGoogle Scholar
  4. Bresgen N, Karlhuber G, Krizbai I, Bauer H, Bauer HC, Eckl PM. Oxidative stress in cultured cerebral endothelial cells induces chromosomal aberrations, micronuclei, and apoptosis. J Neurosci Res. 2003;72:327–33.CrossRefPubMedGoogle Scholar
  5. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Demen. 2007;3(3):186–91.CrossRefGoogle Scholar
  6. Carranza-Madrigal J, Alvizouri-Mũnoz M, Herrera-Abarca JE, Chávez-Carbajal F. Efectos del aguacatecomofuente de ácidosgrasosmonoinsaturados en lìpidosséricos, metabolismo de la glucosa y reología en pacientes con diabetes tipo 2. Med Intern México. 2008;24(4):267–72.Google Scholar
  7. Ceretta LB, Réus GZ, Rezin GT, Scaini G, Streck EL, Quevedo J. Brain energy metabolism parameters in an animal model of diabetes. Metab Brain Dis. 2010;25(4):391–6.CrossRefPubMedGoogle Scholar
  8. Ceretta LB, Réus GZ, Abelaira HM, et al. Increased oxidative stress and imbalance in antioxidant enzymes in the brains of alloxan-induced diabetic rats. Exp Diabetes Res. 2012;2012:302682. 8 pages.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Christen Y. Oxidative stress and Alzheimer disease. Am J Clin Nutr. 2000;71:621S–9.PubMedGoogle Scholar
  10. Crews C, Hough P, Godward J. Study of the main constituents of some authentic walnut oils. J Agric Food Chem. 2005;53:4853–60.CrossRefPubMedGoogle Scholar
  11. Demopoulos HB, Flamm ES, Pietronegro DD, Seligman ML. The free radical pathology and the microcirculation in the major central nervous system disorders. Acta Physiol Scand Suppl. 1980;492:91–119.PubMedGoogle Scholar
  12. Dreher ML, Davenport AJ. Hass avocado composition and potential health effects. Crit Rev Food Sci Nutr. 2013;53(7):738–50.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Duster KC. Avocados a look beyond basic nutrition for one of nature’s whole foods. Nutr Today. 2000;35(4):151–7.CrossRefGoogle Scholar
  14. Edwards JL, Quattrini A, Lentz SI, et al. Diabetes regulates mitochondrial biogenesis and fission in mouse neurons. Diabetologia. 2010;53(1):160–9.CrossRefPubMedGoogle Scholar
  15. Finkel T. Signal transduction by reactive oxygen species. J Cell Biol. 2011;194(1):7–15.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Freidovich I. Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen? N Y Acad Sci. 1999;893:13.CrossRefGoogle Scholar
  17. Gilgun-Sherki Y, Melamed E, Offen D. Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology. 2001;40:959–75.CrossRefPubMedGoogle Scholar
  18. Gotz J, Chen F, van Dorpe J, Nitsch RM. Formation of neurofibrillary tangles in P301L tau transgenic mice induced by Abeta 42 fibrils. Science. 2001;293:1491–5.CrossRefPubMedGoogle Scholar
  19. Growers CA. Available from:; 2012.
  20. Haegele AD, Gillette C, O’Neill C, Wolfe P, Heimendinger J, Sedlacek S, Thompson HJ. Plasma xanthophyll carotenoids correlate inversely with indices of oxidative DNA damage and lipid peroxidation AMC cancer. Cancer Epidemiol Biomarkers Prev. 2000;9:421–5.PubMedGoogle Scholar
  21. Halliwell B. Reactive oxygen species and central nervous systems. J Neurochem. 1992;59:1609–23.CrossRefPubMedGoogle Scholar
  22. Harper PS. The epidemiology of Huntington’s disease. Hum Genet. 1992;89(4):365–76.CrossRefPubMedGoogle Scholar
  23. Hashimura H, Ueda C, Kawabata J, Kasai T. Acetyl-CoA carboxylase inhibitors from avocado (Persea americana Mill) fruits. Biosci Biotechnol Biochem. 2001;65:1656–8.CrossRefPubMedGoogle Scholar
  24. Hughes KJ, Mayne ST, Blumberg JB, Ribaya-Mercardo JD, Johnson EJ, Cartmel B. Plasma carotenoids and biomarkers of oxidative stress in patients with prior head and neck cancer. Biomark Insights. 2009;4:17–26.PubMedPubMedCentralGoogle Scholar
  25. Joseph JA, Shukitt-Hale B, Denisova NA, Bielinski D, Martin A, McEwen JJ, Bickford PC. Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J Neurosci. 1999;19:8114–21.PubMedGoogle Scholar
  26. Kim OK, Murakami A, Takahashi D, Nakamura Y, Torikai K, Kim HW, Ohigashi H. An avocado constituent, persenone A, suppresses expression of inducible forms of nitric oxide synthase and cyclooxygenase in macrophages, and hydrogen peroxide generation in mouse skin. Biosci Biotechnol Biochem. 2000a;64:2504–7.CrossRefPubMedGoogle Scholar
  27. Kim OK, Murakami A, Nakamura Y, Kim HW, Ohigash H. Inhibition by persenone A-related compounds of nitric oxide and superoxide generation from inflammatory leukocytes. Biosci Biotechnol Biochem. 2000b;64:2500–3.CrossRefPubMedGoogle Scholar
  28. KolominskyRabas PL, Sarti C, Heuschmann PU, Graf C, Siemonsen S, Neundoerfer B, et al. A prospective community based study of stroke in Germany. The Erlangen Stroke Project (ESPro): incidence and case fatality at 1, 3, and 12 months. Stroke. 1998;29:2501–6.CrossRefGoogle Scholar
  29. Kumar V. Potential medicinal plants for CNS disorders: an overview. Phytother Res. 2006;20:1023–35.CrossRefPubMedGoogle Scholar
  30. Kurtzke JF. Epidemiology of amyotrophic lateral sclerosis. Adv Neurol. 1982;36:281–302.PubMedGoogle Scholar
  31. Lamers Y. Folate recommendations for pregnancy, lactation, and infancy. Ann Nutr Metab. 2011;59(1):32–7.CrossRefPubMedGoogle Scholar
  32. Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci. 2001;21:8370–7.PubMedGoogle Scholar
  33. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev. 2010;4:118–26 [PMCID: PMC3249911].CrossRefPubMedPubMedCentralGoogle Scholar
  34. McCann JC, Ames BN. Is docosahexaenoic acid, an n23 long chain polyunsaturated fatty acid, required for development of normal brain function? An overview of evidence from cognitive and behavioral tests in humans and animals. Am J Clin Nutr. 2005;82:281–95.PubMedGoogle Scholar
  35. Mecocci P, Polidori MC, Ingegni T, Cherubini A, Chionne F, Cecchetti R, Senin U. Oxidative damage to DNA in lymphocytes from AD patients. Neurology. 1998;51:1014–7.CrossRefPubMedGoogle Scholar
  36. Migliore L, Fontana I, Trippi F, Colognato R, Coppede F, Tognoni G, Nucciarone B, Siciliano G. Oxidative DNA damage in peripheral leukocytes of mild cognitive impairment and AD patients. Neurobiol Aging. 2005;26:567–73.CrossRefPubMedGoogle Scholar
  37. Moreira PI, Oliveira CR. Mitochondria as potential targets in antidiabetic therapy. In: Schwanstecher M, editor. Diabetes—perspectives in drug therapy, vol. 203 of Handbook of experimental pharmacology. Berlin, Germany: Springer; 2011. p. 331–56.Google Scholar
  38. Moreira PI, Santos MS, Moreno AM, Proença T, Seiça R, deOliveira CR. Effect of streptozotocin-induced diabetes on rat brain mitochondria. J Neuroendocrinol. 2004;16(1):32–8.CrossRefPubMedGoogle Scholar
  39. Moreira PI, Smith MA, Zhu X, Honda K, Lee HG, Aliev G, Perry G. Oxidative Damage and Alzheimer’s disease: are antioxidant therapies useful? Drug News Perspect. 2005;18:13–9.CrossRefPubMedGoogle Scholar
  40. Nakamura T, Lipton SA. Nitrosylation and uncompetitive/fast off-rate (UFO) drug therapy in neurodegenerative disorders of protein misfolding. Cell Death Diff. 2007;14(7):1305–14.CrossRefGoogle Scholar
  41. Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, Jones PK, Ghanbari H, Wataya T, Shimohama S, Chiba S, Atwood CS, Petersen RB, Smith MA. Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol. 2001;60:759–67.CrossRefPubMedGoogle Scholar
  42. Ola MS, Aleisa AM, Al-Rejaie SS, et al. Flavonoid, morin inhibits oxidative stress, inflammation and enhances neurotrophic support in the brain of streptozotocin-induced diabetic rats. Neurol Sci. 2014;35(7):1003–8.CrossRefPubMedGoogle Scholar
  43. Ortiz-Avila O, Sámano-García CA, Calderón-Cortés E, et al. Dietary avocado oil supplementation attenuates the alterations induced by type I diabetes and oxidative stress in electron transfer at the complex II-complex III segment of the electron transport chain in rat kidney mitochondria. J Bioenerg Biomembr. 2013;45(3):271–87.CrossRefPubMedGoogle Scholar
  44. Ortiz-Avila O, Esquivel-Martínez M, Olmos-Orizaba BE, Saavedra-Molina A, Rodriguez-Orozco AR, Cortés-Rojo C. Avocado oil improves mitochondrial function and decreases oxidative stress in brain of diabetic rats. J Diabetes Res. 2015;2015:485759.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Petrozzi L, Lucetti C, Scarpato R, Gambaccini G, Trippi F, Bernardini S, Del Dotto P, Migliore L, Bonuccelli U. Cytogenetic alterations in lymphocytes of Alzheimer’s disease and Parkinson’s disease patients. Neurol Sci. 2002;23 Suppl 2:S97–8.CrossRefPubMedGoogle Scholar
  46. Raider JI, Schneeman BO. Prevalence of neural tube defects, folate status, and folate fortification of enriched cereal-grain products in the United States. Pediatrics. 2006;117(4):1394–9.CrossRefGoogle Scholar
  47. Rainey C, Affleck M, Bretschger K, Roslyn A-S. The California avocado: a new look. Nutr Today. 1994;29:23–7.CrossRefGoogle Scholar
  48. Rajput AH. Frequency and cause of Parkinson’s disease. Can J Neurol Sci. 1992;19(1 Suppl):103–7.PubMedGoogle Scholar
  49. Salganik RI. The benefits and hazards of antioxidants: controlling apoptosis and other protective mechanisms in cancer patients and the human population. J Am Coll Nutr. 2001;20(Suppl):464S–72.CrossRefPubMedGoogle Scholar
  50. Scott JM. Evidence of folic acid and folate in the prevention of neural tube defects. Bib Nutr Diet. 2001;55:192–5.Google Scholar
  51. Selvam AB. Inventory of vegetable crude drug samples housed in the botanical survey of India, Howrah. Pharmacogn Rev. 2008;2:61–94.Google Scholar
  52. Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med. 2002;346(7):476–83.CrossRefPubMedGoogle Scholar
  53. St. George-Hyslop PH. Piecing together Alzheimer’s. Sci Am. 2000;283:76–83.CrossRefPubMedGoogle Scholar
  54. Thomas P, O’Callaghan NJ, Fenech M. Telomere length in white blood cells, buccal cells and brain tissue and its variation with ageing and Alzheimer’s disease. Mech Ageing Dev. 2008;129:183–90.CrossRefPubMedGoogle Scholar
  55. Toth C. Diabetes and neurodegeneration in the brain. In: Zochodne DW, Malik RA, editors. Diabetes and the nervous system, vol. 126 of Handbook of clinical neurology. New York, NY: Elsevier; 2014. p. 489–511.CrossRefGoogle Scholar
  56. USDA (U.S. Department of Agriculture). Avocado, almond, pistachio and walnut Composition, Nutrient Data Laboratory. USDA National Nutrient Database for Standard Reference, Release 24. Washington, DC: U.S. Department of Agriculture; 2011.Google Scholar
  57. van Rensburg SJ, van Zyl JM, Potocnik FC, Daniels WM, Uys J, Marais L, Hon D, van der Walt BJ, Erasmus RT. The effect of stress on the antioxidative potential of serum: implications for Alzheimer’s disease. Metab Brain Dis. 2006;21:171–9.PubMedGoogle Scholar
  58. Vincent AM, McLean LL, Backus C, Feldman EL. Short-term hyperglycemia produces oxidative damage and apoptosis in neurons. FASEB J. 2005;19(6):638–40.PubMedGoogle Scholar
  59. Von Zglinicki T. Role of oxidative stress in telomere length regulation and replicative senescence. Ann N Y Acad Sci. 2009;908:99–110.CrossRefGoogle Scholar
  60. Walker JG, Batterham PJ, Mackinnon AJ, Jorm AF, Hickie I, Fenech M, et al. Oral folic acid and vitamin B-12 supplementation to prevent cognitive decline in community-dwelling older adults with depressive symptoms—the Beyond Ageing Project: a randomized controlled trial. Am J Clin Nutr. 2012;95(1):194–203.CrossRefPubMedGoogle Scholar
  61. Wilson RD, Johnson JA, Wyatt P, Allen V, Gagnon A, Langlois S, et al. Pre-conceptional vitamin/folic acid supplementation 2007: the use of folic acid in combination with a multivitamin supplement for the prevention of neural tube defects and other congenital anomalies. J Obstet Gynaecol Can. 2007;29(12):1003–26.CrossRefPubMedGoogle Scholar
  62. Winner B, Kohl Z, Gage FH. Neurodegenerative disease and adult neurogenesis. Eur J Neurosci. 2011;33(6):1139–51.CrossRefPubMedGoogle Scholar
  63. Yasir M, Das S, Kharya MD. The phytochemical and pharmacological profile of Persea americana Mill. Pharmacogn Rev. 2010;4(7):77–84.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Yehuda S, Rabinovitz S, Carasso RL. The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol Aging. 2002;23:843–53.CrossRefPubMedGoogle Scholar
  65. Youdim MBH, Lavie L. Selective MAO-A and B inhibitors, radical scavengers and nitric oxide synthase inhibitors in Parkinson’s disease. Life Sci. 1994;55:2077–82.CrossRefPubMedGoogle Scholar
  66. Young LC, Petersen MR, Sigurdson AJ, Sampson LA, Ward EM, Sampson LA. High density antioxidant intakes are associated with decreased chromosome translocation frequency in airline pilots. Am J Clin Nutr. 2009;90:1402–10.CrossRefGoogle Scholar
  67. Yun-Zhong F, Sheng Y, Guoyao W. Free radicals, antioxidants, and nutrition. Nutrition. 2002;18:872–9.CrossRefGoogle Scholar
  68. Zheng M, Storz G. Redox sensing by prokaryotic transcription factors. Biochem Pharmacol. 2000;59:1–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Medical Biochemistry, School of Medicine, College of Health and Medical SciencesHaramaya UniversityDire DawaEthiopia

Personalised recommendations