Carotenoids and Neurobiological Health

Part of the Advances in Neurobiology book series (NEUROBIOL, volume 12)


The consumption of carotenoid phytonutrients, largely as part of plant tissue, has been associated with a number of health benefits. Epidemiological and other studies support a link between higher dietary intake and tissue concentrations of carotenoids and lower risk of chronic diseases such as heart disease, diabetes, and some cancers. Evidence also suggests that increased levels of carotenoids can help maintain healthy cognitive function, especially into older age. Carotenoids mediate their beneficial effects via several mechanisms including cell growth regulation and modulation of gene expression and immune activity. However their primary protective mechanism is thought to be due to their potent antioxidant properties that effectively scavenge free radicals and reduce the risk of oxidative damage. This chapter discusses the impact of carotenoids on neurological health by first reviewing their chemical characteristics, dietary sources, and general mechanisms of action before examining in some detail the available evidence for a protective role for various carotenoids in neurodegenerative disease.


Mild Cognitive Impairment Quench Singlet Oxygen Trans Lycopene Porcine Brain Capillary Endothelial Cell Altered Cholesterol Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Compliance with Ethics Requirements

The authors declare that they have no conflicts of interest.


  1. Ambani LM, Van Woert MH, Murphy S. Brain peroxidase and catalase in Parkinson disease. Arch Neurol. 1975;32(2):114–8.CrossRefPubMedGoogle Scholar
  2. Anchisi L, Dessì S, Pani A, Mandas A. Cholesterol homeostasis: a key to prevent or slow down neurodegeneration. Front Physiol. 2013;3:486.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Andersen JK. Oxidative stress in neurodegeneration: cause or consequence? Nat Med. 2004;10(SUPPL):S18–25.CrossRefPubMedGoogle Scholar
  4. Annunziato L, Amoroso S, Pannaccione A, et al. Apoptosis induced in neuronal cells by oxidative stress: role played by caspases and intracellular calcium ions. Toxicol Lett. 2003;139(2–3):125–33.CrossRefPubMedGoogle Scholar
  5. Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidatives stress. Nat Rev Drug Discov. 2004;3(3):205–14.CrossRefPubMedGoogle Scholar
  6. Belleville S, Gilbert B, Fontaine F, Gagnon L, Ménard É, Gauthier S. Improvement of episodic memory in persons with mild cognitive impairment and healthy older adults: evidence from a cognitive intervention program. Dement Geriatr Cogn Disord. 2006;22(5–6):486–99.CrossRefPubMedGoogle Scholar
  7. Ben-Amotz A, Fishler R. Analysis of carotenoids with emphasis on 9-cis β-carotene in vegetables and fruits commonly consumed in Israel. Food Chem. 1998;62(4):515–20.CrossRefGoogle Scholar
  8. Ben-Dor A, Steiner M, Gheber L, et al. Carotenoids activate the antioxidant response element transcription system. Mol Cancer Ther. 2005;4(1):177–86.PubMedGoogle Scholar
  9. Bhosale P, Larson AJ, Frederick JM, Southwick K, Thulin CD, Bernstein PS. Identification and characterization of a Pi isoform of glutathione S-transferase (GSTP1) as a zeaxanthin-binding protein in the macula of the human eye. J Biol Chem. 2004;279(47):49447–54.CrossRefPubMedGoogle Scholar
  10. Bhosale P, Li B, Sharifzadeh M, et al. Purification and partial characterization of a lutein-binding protein from human retina. Biochemistry. 2009;48(22):4798–807.CrossRefPubMedGoogle Scholar
  11. Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet. 2006;368(9533):387–403.CrossRefPubMedGoogle Scholar
  12. Blom ES, Giedraitis V, Zetterberg H, et al. Rapid progression from mild cognitive impairment to Alzheimer’s disease in subjects with elevated levels of tau in cerebrospinal fluid and the Apoe ε4/ε4 genotype. Dement Geriatr Cogn Disord. 2009;27(5):458–64.CrossRefPubMedGoogle Scholar
  13. Blumberg J, Block G. The alpha-tocopherol, beta-carotene cancer prevention study in Finland. Nutr Rev. 1994;52(7):242–5.CrossRefPubMedGoogle Scholar
  14. Bolton SJ, Anthony DC, Perry VH. Loss of the tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood-brain barrier breakdown in vivo. Neuroscience. 1998;86(4):1245–57.CrossRefPubMedGoogle Scholar
  15. Bone RA, Landrum JT, Fernandez L, Tarsis SL. Analysis of the macular pigment by HPLC: retinal distribution and age study. Invest Ophthalmol Vis Sci. 1988;29(6):843–9.PubMedGoogle Scholar
  16. Braak H, Braak E. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging. 1997;18(4):351–7.CrossRefPubMedGoogle Scholar
  17. Britton G. Structure and properties of carotenoids in relation to function. FASEB J. 1995;9(15):1551–8.PubMedGoogle Scholar
  18. Britton G, Liaaen-Jensen S, Pfander H. Carotenoids. Volume 5: Nutrition and Health. Berlin: Birkhauser Verlag; 2009.CrossRefGoogle Scholar
  19. Brown CR, Durst RW, Wrolstad R, De Jong W. Variability of phytonutrient content of potato in relation to growing location and cooking method. Potato Res. 2008;51(3–4):259–70.CrossRefGoogle Scholar
  20. Bu G. Apolipoprotein e and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat Rev Neurosci. 2009;10(5):333–44.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Bun S, Ikejima C, Kida J, et al. A combination of supplements may reduce the risk of Alzheimer’s disease in elderly Japanese with normal cognition. J Alzheimers Dis. 2015;45(1):15–25.PubMedGoogle Scholar
  22. Burri BJ, Neidlinger TR, Clifford AJ. Serum carotenoid depletion follows first-order kinetics in healthy adult women fed naturally low carotenoid diets. J Nutr. 2001;131(8):2096–100.PubMedGoogle Scholar
  23. Burton GW, Ingold KU. β-Carotene: an unusual type of lipid antioxidant. Science. 1984;224(4649):569–73.CrossRefPubMedGoogle Scholar
  24. Çakatay U, Telci A, Kayal R, Tekeli F, Akçay T, Sivas A. Relation of oxidative protein damage and nitrotyrosine levels in the aging rat brain. Exp Gerontol. 2001;36(2):221–9.CrossRefPubMedGoogle Scholar
  25. Carder PJ, Hume R, Fryer AA, Strange RC, Lauder J, Bell JE. Glutathione S-transferase in human brain. Neuropathol Appl Neurobiol. 1990;16(4):293–303.CrossRefPubMedGoogle Scholar
  26. Castenmiller JJM, West CE. Bioavailability and bioconversion of carotenoids. Annu Rev Nutr. 1998;18:19–38.CrossRefPubMedGoogle Scholar
  27. Chen X, Stern D, Shi DY. Mitochondrial dysfunction and Alzheimer’s disease. Curr Alzheimer Res. 2006;3(5):515–20.CrossRefPubMedGoogle Scholar
  28. Chew BP, Park JS, Wong TS, et al. Importance of β-carotene nutrition in the dog and cat: uptake and immunity. Ohio: Orange Frazer Press; 1998.Google Scholar
  29. Chew BP, Park JS, Weng BC, Wong TS, Hayek MG, Reinhart GA. Dietary β-carotene absorption by blood plasma and leukocytes in domestic cats. J Nutr. 2000;130(9):2322–5.PubMedGoogle Scholar
  30. Coburn CT, Hajri T, Ibrahimi A, Abumrad NA. Role of CD36 in membrane transport and utilization of long-chain fatty acids by different tissues. J Mol Neurosci. 2001;16(2–3):117–21.CrossRefPubMedGoogle Scholar
  31. Collins LM, Toulouse A, Connor TJ, Nolan YM. Contributions of central and systemic inflammation to the pathophysiology of Parkinson’s disease. Neuropharmacology. 2012;62(7):2154–68.CrossRefPubMedGoogle Scholar
  32. Coraci IS, Husemann J, Berman JW, et al. CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer’s disease brains and can mediate production of reactive oxygen species in response to β-amyloid fibrils. Am J Pathol. 2002;160(1):101–12.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Craft NE, Haitema TB, Garnett KM, Fitch KA, Dorey CK. Carotenoid, tocopherol, and retinol concentrations in elderly human brain. J Nutr Health Aging. 2004;8(3):156–62.PubMedGoogle Scholar
  34. Cutler RG, Pedersen WA, Camandola S, Rothstein JD, Mattson MP. Evidence that accumulation of ceramides and cholesterol esters mediates oxidative stress - induced death of motor neurons in amyotrophic lateral sclerosis. Ann Neurol. 2002;52(4):448–57.CrossRefPubMedGoogle Scholar
  35. Cutler RG, Kelly J, Storie K, et al. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci U S A. 2004;101(7):2070–5.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Dai Q, Borenstein AR, Wu Y, Jackson JC, Larson EB. Fruit and vegetable juices and Alzheimer’s disease: the Kame Project. Am J Med. 2006;119(9):751–9.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Davidson E, Cogdell RJ. Reconstitution of carotenoids into the light-harvesting pigment-protein complex from the carotenoidless mutant of Rhodopseudomonas sphaeroides R26. Biochim Biophys Acta. 1981;635(2):295–303.CrossRefPubMedGoogle Scholar
  38. de Chaves EP, Narayanaswami V. Apolipoprotein E and cholesterol in aging and disease in the brain. Future Lipidol. 2008;3(5):505–30.CrossRefPubMedPubMedCentralGoogle Scholar
  39. De Leon MJ, Golomb J, George AE, et al. The radiologic prediction of Alzheimer disease: the atrophic hippocampal formation. Am J Neuroradiol. 1993;14(4):897–906.PubMedGoogle Scholar
  40. De Leon MJ, Convit A, Wolf OT, et al. Prediction of cognitive decline in normal elderly subjects with 2-[18F]fluoro-2-deoxy-D-glucose/positron-emission tomography (FDG/PET). Proc Natl Acad Sci U S A. 2001;98(19):10966–71.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Dexter D, Carter C, Agid F, et al. Lipid peroxidation as cause of nigral cell death in Parkinson’s disease. Lancet. 1986;328(8507):639–40.CrossRefGoogle Scholar
  42. Dexter DT, Carter CJ, Wells FR, et al. Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem. 1989;52(2):381–9.CrossRefPubMedGoogle Scholar
  43. Di Mascio P, Kaiser S, Sies H. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys. 1989;274(2):532–8.CrossRefPubMedGoogle Scholar
  44. During A, Dawson HD, Harrison EH. Carotenoid transport is decreased and expression of the lipid transporters SR-BI, NPC1L1, and ABCA1 is downregulated in caco-2 cells treated with ezetimibe. J Nutr. 2005;135(10):2305–12.PubMedGoogle Scholar
  45. During A, Doraiswamy S, Harrison EH. Xanthophylls are preferentially taken up compared with β-carotene by retinal cells via a SRBI-dependent mechanism. J Lipid Res. 2008;49(8):1715–24.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Edderkaoui M, Hui H, Li G, et al. Phytochemicals inhibit proliferation and promote death through NADPH oxidase and G6PD. Cancer Res. 2010;70:1895.CrossRefGoogle Scholar
  47. Endemann G, Stanton LW, Madden KS, Bryant CM, White RT, Protter AA. CD36 is a receptor for oxidized low density lipoprotein. J Biol Chem. 1993;268(16):11811–6.PubMedGoogle Scholar
  48. Evans MC, Couch Y, Sibson N, Turner MR. Inflammation and neurovascular changes in amyotrophic lateral sclerosis. Mol Cell Neurosci. 2013;53:34–41.CrossRefPubMedGoogle Scholar
  49. Farrall AJ, Wardlaw JM. Blood-brain barrier: ageing and microvascular disease - systematic review and meta-analysis. Neurobiol Aging. 2009;30(3):337–52.CrossRefPubMedGoogle Scholar
  50. Fernández-García E, Carvajal-Lérida I, Jarén-Galán M, Garrido-Fernández J, Pérez-Gálvez A, Hornero-Méndez D. Carotenoids bioavailability from foods: from plant pigments to efficient biological activities. Food Res Int. 2012;46(2):438–50.CrossRefGoogle Scholar
  51. Fielding CJ, Fielding PE. Caveolae and intracellular trafficking of cholesterol. Adv Drug Deliv Rev. 2001;49(3):251–64.CrossRefPubMedGoogle Scholar
  52. Fuhrman B, Elis A, Aviram M. Hypocholesterolemic effect of lycopene and β-carotene is related to suppression of cholesterol synthesis and augmentation of LDL receptor activity in macrophages. Biochem Biophys Res Commun. 1997;233(3):658–62.CrossRefPubMedGoogle Scholar
  53. Furney SJ, Kronenberg D, Simmons A, et al. Combinatorial markers of mild cognitive impairment conversion to Alzheimers disease - cytokines and MRI measures together predict disease progression. J Alzheimers Dis. 2011;26 SUPPL 3:395–405.PubMedGoogle Scholar
  54. Gargalovic P, Dory L. Caveolins and macrophage lipid metabolism. J Lipid Res. 2003;44(1):11–21.CrossRefPubMedGoogle Scholar
  55. Glöckner F, Ohm TG. Tau pathology induces intraneuronal cholesterol accumulation. J Neuropathol Exp Neurol. 2014;73(9):846–54.CrossRefPubMedGoogle Scholar
  56. Goti D, Hrzenjak A, Levak-Frank S, et al. Scavenger receptor class B, type I is expressed in porcine brain capillary endothelial cells and contributes to selective uptake of HDL-associated vitamin E. J Neurochem. 2001;76(2):498–508.CrossRefPubMedGoogle Scholar
  57. Götz ME, Freyberger A, Riederer P. Oxidative stress: a role in the pathogenesis of Parkinson’s disease. J Neural Transm Suppl. 1990;29:241–9.PubMedGoogle Scholar
  58. Grodstein F, Kang JH, Glynn RJ, Cook NR, Gaziano JM. A randomized trial of beta carotene supplementation and cognitive function in men: the physicians’ health study II. Arch Intern Med. 2007;167(20):2184–90.CrossRefPubMedGoogle Scholar
  59. Guest J, Grant R, Garg M, Mori TA, Croft KD, Bilgin A. Cerebrospinal fluid levels of inflammation, oxidative stress and NAD+ are linked to differences in plasma carotenoid concentrations. J Neuroinflammation. 2014;11:117.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Guest J, Guillemin GJ, Heng B, Grant R. Lycopene pretreatment ameliorates acute ethanol induced NAD+ depletion in human astroglial cells. Oxid Med Cell Longev. 2015;2015:741612.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Gustin DM, Rodvold KA, Sosman JA, et al. Single-dose pharmacokinetic study of lycopene delivered in a well-defined food-based lycopene delivery system (tomato paste-oil mixture) in healthy adult male subjects. Cancer Epidemiol Biomarkers Prev. 2004;13(5):850–60.PubMedGoogle Scholar
  62. Halliwell B. Oxidative stress and neurodegeneration: where are we now? J Neurochem. 2006;97(6):1634–58.CrossRefPubMedGoogle Scholar
  63. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11(3):298–300.CrossRefPubMedGoogle Scholar
  64. Hollander D, Ruble Jr PE. β-Carotene intestinal absorption: bile, fatty acid, pH, and flow rate effects on transport. Am J Physiol. 1978;235(6):E686–91.PubMedGoogle Scholar
  65. Howland DS, Trusko SP, Savage MJ, et al. Modulation of secreted β-amyloid β-peptide in brain by cholesterol. J Biol Chem. 1998;273(26):16576–82.CrossRefPubMedGoogle Scholar
  66. Hu ZY, Bourreau E, Jung-Testas I, Robel P, Baulieu EE. Neurosteroids: oligodendrocyte mitochondria convert cholesterol to pregnenolone. Proc Natl Acad Sci U S A. 1987;84(23):8215–9.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Il’Yasova D, Ivanova A, Morrow JD, Cesari M, Pahor M. Correlation between two markers of inflammation, serum C-reactive protein and interleukin 6, and indices of oxidative stress in patients with high risk of cardiovascular disease. Biomarkers. 2008;13(1):41–51.CrossRefPubMedGoogle Scholar
  68. IUPAC Commission on the Nomenclature of Organic Chemistry and IUPAC-IUB commission on Biochemical Nomenclature. Nomenclature of carotenoids (Rules approved 1974). Pure Appl Chem. 1975;41(3):405–31.Google Scholar
  69. Jang SH, Lim JW, Kim H. Beta-carotene inhibits Helicobacter pylori-induced expression of inducible nitric oxide synthase and cyclooxygenase-2 in human gastric epithelial AGS cells. J Physiol Pharmacol. 2009;60 Suppl 7:131–7.PubMedGoogle Scholar
  70. Jiménez-Jiménez FJ, Molina J, Fernández-Calle P, et al. Serum levels of β-carotene and other carotenoids in Parkinson’s disease. Neurosci Lett. 1993;157(1):103–6.CrossRefPubMedGoogle Scholar
  71. Jiménez-Jiménez FJ, Molina JA, De Bustos F, et al. Serum levels of β-carotene, α-carotene and vitamin A in patients with Alzheimer’s disease. Eur J Neurol. 1999;6(4):495–7.CrossRefPubMedGoogle Scholar
  72. Johnson EJ. A possible role for lutein and zeaxanthin in cognitive function in the elderly. Am J Clin Nutr. 2012;96(5):1161S–5.CrossRefPubMedGoogle Scholar
  73. Johnson EJ, Vishwanathan R, Johnson MA, et al. Relationship between serum and brain carotenoids, α -tocopherol, and retinol concentrations and cognitive performance in the oldest old from the Georgia centenarian study. J Aging Res. 2013;2013:951786.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Kansanen E, Kuosmanen SM, Leinonen H, Levonenn AL. The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol. 2013;1(1):45–9.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Kaplan LA, Lau JM, Stein EA. Carotenoid composition, concentrations, and relationships in various human organs. Clin Physiol Biochem. 1990;8(1):1–10.PubMedGoogle Scholar
  76. Kaulmann A, Bohn T. Carotenoids, inflammation, and oxidative stress-implications of cellular signaling pathways and relation to chronic disease prevention. Nutr Res. 2014;34(11):907–29.CrossRefPubMedGoogle Scholar
  77. Kavitha K, Kowshik J, Kishore TKK, Baba AB, Nagini S. Astaxanthin inhibits NF-κB and Wnt/β-catenin signaling pathways via inactivation of Erk/MAPK and PI3K/Akt to induce intrinsic apoptosis in a hamster model of oral cancer. Biochim Biophys Acta. 2013;1830(10):4433–44.CrossRefPubMedGoogle Scholar
  78. Keshari RS, Jyoti A, Dubey M, et al. Cytokines induced neutrophil extracellular traps formation: implication for the inflammatory disease condition. PLoS One. 2012;7(10):e48111.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Kesse-Guyot E, Andreeva VA, Ducros V, et al. Carotenoid-rich dietary patterns during midlife and subsequent cognitive function. Br J Nutr. 2014;111(5):915–23.CrossRefPubMedGoogle Scholar
  80. Khachik F, Beecher GR, Whittaker NF. Separation, identification, and quantification of the major carotenoid and chlorophyll constituents in extracts of several green vegetables by liquid chromatography. J Agric Food Chem. 1986;34(4):603–16.CrossRefGoogle Scholar
  81. Khachik F, Beecher GR, Goli MB, Lusby RW. Separation, identification, and quantification of carotenoids in fruits, vegetables and human plasma by high-performance liquid-chromatography. Pure Appl Chem. 1991;63:71–80.CrossRefGoogle Scholar
  82. Khoo HE, Prasad KN, Kong KW, Jiang Y, Ismail A. Carotenoids and their isomers: color pigments in fruits and vegetables. Molecules. 2011;16(2):1710–38.CrossRefPubMedGoogle Scholar
  83. Kiko T, Nakagawa K, Tsuduki T, Suzuki T, Arai H, Miyazawa T. Significance of lutein in red blood cells of Alzheimer’s disease patients. J Alzheimers Dis. 2012;28(3):593–600.PubMedGoogle Scholar
  84. Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta. 2010;1802(4):396–405.CrossRefPubMedGoogle Scholar
  85. Kim GY, Kim JH, Ahn SC, et al. Lycopene suppresses the lipopolysaccharide-induced phenotypic and functional maturation of murine dendritic cells through inhibition of mitogen-activated protein kinases and nuclear factor-κB. Immunology. 2004;113(2):203–11.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Kim J, Cha YN, Surh YJ. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat Res. 2010a;690(1–2):12–23.CrossRefPubMedGoogle Scholar
  87. Kim YH, Koh HK, Kim DS. Down-regulation of IL-6 production by astaxanthin via ERK-, MSK-, and NF-κB-mediated signals in activated microglia. Int Immunopharmacol. 2010b;10(12):1560–72.CrossRefPubMedGoogle Scholar
  88. Kish SJ, Morito C, Hornykiewicz O. Glutathione peroxidase activity in Parkinson’s disease brain. Neurosci Lett. 1985;58(3):343–6.CrossRefPubMedGoogle Scholar
  89. Korade Z, Kenworthy AK. Lipid rafts, cholesterol, and the brain. Neuropharmacology. 2008;55(8):1265–73.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Kostic D, White WS, Olson JA. Intestinal absorption, serum clearance, and interactions between lutein and β-carotene when administered to human adults in separate or combined oral doses. Am J Clin Nutr. 1995;62(3):604–10.PubMedGoogle Scholar
  91. Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE. Mitochondria and reactive oxygen species. Free Radic Biol Med. 2009;47(4):333–43.CrossRefPubMedGoogle Scholar
  92. Koyama Y. New trends in photobiology: structures and functions of carotenoids in photosynthetic systems. J Photochem Photobiol B Biol. 1991;9(3–4):265–80.Google Scholar
  93. Krinsky NI. Carotenoid protection against photooxidation. Pure Appl Chem. 1979;51:649–60.CrossRefGoogle Scholar
  94. Kuryłowicz A, Nauman J. The role of nuclear factor-κB in the development of autoimmune diseases: a link between genes and environment. Acta Biochim Pol. 2008;55(4):629–47.PubMedGoogle Scholar
  95. Lee YB, Schrader JW, Kim SU. p38 map kinase regulates TNF-α production in human astrocytes and microglia by multiple mechanisms. Cytokine. 2000;12(7):874–80.CrossRefPubMedGoogle Scholar
  96. Lee SJ, Bai SK, Lee KS, et al. Astaxanthin inhibits nitric oxide production and inflammatory gene expression by suppressing IκB kinase-dependent NF-κB activation. Mol Cells. 2003;16(1):97–105.PubMedGoogle Scholar
  97. Lees AJ, Hardy J, Revesz T. Parkinson’s disease. Lancet. 2009;373(9680):2055–66.CrossRefPubMedGoogle Scholar
  98. Leoni V, Solomon A, Kivipelto M. Links between ApoE, brain cholesterol metabolism, tau and amyloid β-peptide in patients with cognitive impairment. Biochem Soc Trans. 2010;38(4):1021–5.CrossRefPubMedGoogle Scholar
  99. Li L, Yuan H. Chromoplast biogenesis and carotenoid accumulation. Arch Biochem Biophys. 2013;539(2):102–9.CrossRefPubMedGoogle Scholar
  100. Lin HY, Huang BR, Yeh WL, et al. Antineuroinflammatory effects of lycopene via activation of adenosine monophosphate-activated protein kinase-α1/heme oxygenase-1 pathways. Neurobiol Aging. 2014;35(1):191–202.CrossRefPubMedGoogle Scholar
  101. Ling EA, Leblond CP. Investigation of glial cells in semithin sections. II. Variation with age in the numbers of the various glial cell types in rat cortex and corpus callosum. J Comp Neurol. 1973;149(1):73–82.CrossRefPubMedGoogle Scholar
  102. Lomnitski L, Grossman S, Bergman M, Sofer Y, Sklan D. In vitro and in vivo effects of β-carotene on rat epidermal lipoxygenases. Int J Vitam Nutr Res. 1997;67(6):407–14.PubMedGoogle Scholar
  103. Lowe GM, Booth LA, Young AJ, Bilton RF. Lycopene and β-carotene protect against oxidative damage in HT29 cells at low concentrations but rapidly lose this capacity at higher doses. Free Radic Res. 1999;30(2):141–51.CrossRefPubMedGoogle Scholar
  104. Macdonald PN, Bok D, Ong DE. Localization of cellular retinol-binding protein and retinol-binding protein in cells comprising the blood-brain barrier of rat and human. Proc Natl Acad Sci U S A. 1990;87(11):4265–9.CrossRefPubMedPubMedCentralGoogle Scholar
  105. Marchesi VT. Alzheimer’s dementia begins as a disease of small blood vessels, damaged by oxidative-induced inflammation and dysregulated amyloid metabolism: implications for early detection and therapy. FASEB J. 2011;25(1):5–13.CrossRefPubMedGoogle Scholar
  106. Mathews Roth MM, Abraham AA, Gabuzda TG. Beta carotene content of certain organs from two patients receiving high doses of beta carotene. Clin Chem. 1976;22(6):922–4.PubMedGoogle Scholar
  107. Mathews-Roth MM. Carotenoid pigments and protection against photosensitization: how studies in bacteria suggested a treatment for a human disease. Perspect Biol Med. 1984;28(1):127–39.CrossRefPubMedGoogle Scholar
  108. McConnell BB, Yang VW. The role of inflammation in the pathogenesis of colorectal cancer. Curr Colorectal Cancer Rep. 2009;5(2):69–74.CrossRefPubMedPubMedCentralGoogle Scholar
  109. Mecocci P, MacGarvey U, Kaufman AE, et al. Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol. 1993;34(4):609–16.CrossRefPubMedGoogle Scholar
  110. Merzlyak MN, Solovchenko AE. Photostability of pigments in ripening apple fruit: a possible photoprotective role of carotenoids during plant senescence. Plant Sci. 2002;163(4):881–8.CrossRefGoogle Scholar
  111. Miyake Y, Fukushima W, Tanaka K, et al. Dietary intake of antioxidant vitamins and risk of Parkinson’s disease: a case-control study in Japan. Eur J Neurol. 2011;18(1):106–13.CrossRefPubMedGoogle Scholar
  112. Mohaupt MG, Schwöbel J, Elzie JL, Kannan GS, Kone BC. Cytokines activate inducible nitric oxide synthase gene transcription in inner medullary collecting duct cells. Am J Physiol. 1995;268(4 37-4):F770–7.PubMedGoogle Scholar
  113. Moore T. Vitamin A and carotene: the vitamin A reserve of the adult human being in health and disease. Biochem J. 1937;31(1):155–64.CrossRefPubMedPubMedCentralGoogle Scholar
  114. Moreira PI, Nunomura A, Nakamura M, et al. Nucleic acid oxidation in Alzheimer disease. Free Radic Biol Med. 2008;44(8):1493–505.CrossRefPubMedGoogle Scholar
  115. Mortensen A, Skibsted LH. Importance of carotenoid structure in radical-scavenging reactions. J Agric Food Chem. 1997;45(8):2970–7.CrossRefGoogle Scholar
  116. Moussa M, Gouranton E, Gleize B, et al. CD36 is involved in lycopene and lutein uptake by adipocytes and adipose tissue cultures. Mol Nutr Food Res. 2011;55(4):578–84.CrossRefPubMedGoogle Scholar
  117. Nagao A. Absorption and metabolism of dietary carotenoids. Biofactors. 2011;37(2):83–7.CrossRefPubMedGoogle Scholar
  118. Nagao A. Bioavailability of dietary carotenoids: intestinal absorption and metabolism. Jpn Agric Res Q. 2014;48(4):385–92.CrossRefGoogle Scholar
  119. Namitha KK, Negi PS. Chemistry and biotechnology of carotenoids. Crit Rev Food Sci Nutr. 2010;50(8):1040–8398.CrossRefGoogle Scholar
  120. Napolitano M, Avanzi L, Manfredini S, Bravo E. Effects of new combinative antioxidant FeAOX-6 and α-tocotrienol on macrophage atherogenesis-related functions. Vascul Pharmacol. 2007a;46(6):394–405.CrossRefPubMedGoogle Scholar
  121. Napolitano M, De Pascale C, Wheeler-Jones C, Botham KM, Bravo E. Effects of lycopene on the induction of foam cell formation by modified LDL. Am J Physiol Endocrinol Metab. 2007b;293(6):E1820–7.CrossRefPubMedGoogle Scholar
  122. Nierenberg DW, Nann SL. A method for determining concentrations of retinol, tocopherol, and five carotenoids in human plasma and tissue samples. Am J Clin Nutr. 1992;56(2):417–26.PubMedGoogle Scholar
  123. Niyogi KK. Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Biol. 1999;50:333–59.CrossRefGoogle Scholar
  124. Nunomura A, Perry G, Aliev G, et al. Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol. 2001;60(8):759–67.CrossRefPubMedGoogle Scholar
  125. Olmedilla-Alonso B, Granado-Lorencio F, Blanco-Navarro I. Carotenoids, retinol and tocopherols in blood: comparability between serum and plasma (Li-heparin) values. Clin Biochem. 2005;38(5):444–9.CrossRefPubMedGoogle Scholar
  126. Oram JF. ATP-binding cassette transporter A1 and cholesterol trafficking. Curr Opin Lipidol. 2002;13(4):373–81.CrossRefPubMedGoogle Scholar
  127. Ouchi A, Aizawa K, Iwasaki Y, et al. Kinetic study of the quenching reaction of singlet oxygen by carotenoids and food extracts in solution. Development of a singlet oxygen absorption capacity (SOAC) assay method. J Agric Food Chem. 2010;58(18):9967–78.CrossRefPubMedGoogle Scholar
  128. Pamplona R, Costantini D. Molecular and structural antioxidant defenses against oxidative stress in animals. Am J Physiol Regul Integr Comp Physiol. 2011;301(4):R843–63.CrossRefPubMedGoogle Scholar
  129. Panza F, Solfrizzi V, Colacicco AM, et al. Mediterranean diet and cognitive decline. Public Health Nutr. 2004;7(7):959–63.CrossRefPubMedGoogle Scholar
  130. Parker RS. Carotenoids in human blood and tissues. J Nutr. 1989;119(1):101–4.PubMedGoogle Scholar
  131. Perry TL, Godin DV, Hansen S. Parkinson’s disease: a disorder due to nigral glutathione deficiency? Neurosci Lett. 1982;33(3):305–10.CrossRefPubMedGoogle Scholar
  132. Petersen RC, Smith GE, Ivnik RJ, et al. Apolipoprotein E status as a predictor of the development of Alzheimer’s disease in memory-impaired individuals. JAMA. 1995;273(16):1274–8.CrossRefPubMedGoogle Scholar
  133. Petit-Frère C, Clingen PH, Grewe M, et al. Induction of interleukin-6 production by ultraviolet radiation in normal human epidermal keratinocytes and in a human keratinocyte cell line is mediated by DNA damage. J Invest Dermatol. 1998;111(3):354–9.CrossRefPubMedGoogle Scholar
  134. Porrini M, Riso P. Lymphocyte lycopene concentration and DNA protection from oxidative damage is increased in women after a short period of tomato consumption. J Nutr. 2000;130(2):189–92.PubMedGoogle Scholar
  135. Porrini M, Riso P. What are typical lycopene intakes? J Nutr. 2005;135(8):2042S–5.PubMedGoogle Scholar
  136. Pott I, Breithaupt DE, Carle R. Detection of unusual carotenoid esters in fresh mango (Mangifera indica L. cv. ‘Kent’). Phytochemistry. 2003;64(4):825–9.CrossRefPubMedGoogle Scholar
  137. Prakash A, Kumar A. Implicating the role of lycopene in restoration of mitochondrial enzymes and BDNF levels in β-amyloid induced Alzheimers disease. Eur J Pharmacol. 2014;741:104–11.CrossRefPubMedGoogle Scholar
  138. Price JL, Morris JC. Tangles and plaques in nondemented aging and ‘preclinical’ Alzheimer’s disease. Ann Neurol. 1999;45(3):358–68.CrossRefPubMedGoogle Scholar
  139. Puglielli L, Konopka G, Pack-Chung E, et al. Acyl-coenzyme A: cholesterol acyltransferase modulates the generation of the amyloid β-peptide. Nat Cell Biol. 2001;3(10):905–12.CrossRefPubMedGoogle Scholar
  140. Qu M, Li L, Chen C, et al. Protective effects of lycopene against amyloid β-induced neurotoxicity in cultured rat cortical neurons. Neurosci Lett. 2011;505(3):286–90.CrossRefPubMedGoogle Scholar
  141. Rafi MM, Yadav PN, Reyes M. Lycopene inhibits LPS-induced proinflammatory mediator inducible nitric oxide synthase in mouse macrophage cells. J Food Sci. 2007;72(1):S69–74.CrossRefGoogle Scholar
  142. Rawdin BJ, Mellon SH, Dhabhar FS, et al. Dysregulated relationship of inflammation and oxidative stress in major depression. Brain Behav Immun. 2013;31:143–52.CrossRefPubMedGoogle Scholar
  143. Reboul E, Borel P. Proteins involved in uptake, intracellular transport and basolateral secretion of fat-soluble vitamins and carotenoids by mammalian enterocytes. Prog Lipid Res. 2011;50(4):388–402.CrossRefPubMedGoogle Scholar
  144. Reboul E, Abou L, Mikail C, et al. Lutein transport by Caco-2 TC-7 cells occurs partly by a facilitated process involving the scavenger receptor class B type I (SR-BI). Biochem J. 2005;387(2):455–61.CrossRefPubMedPubMedCentralGoogle Scholar
  145. Refolo LM, Pappolla MA, Malester B, et al. Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol Dis. 2000;7(4):321–31.CrossRefPubMedGoogle Scholar
  146. Renzi LM, Dengler MJ, Puente A, Miller LS, Hammond BR. Relationships between macular pigment optical density and cognitive function in unimpaired and mildly cognitively impaired older adults. Neurobiol Aging. 2014;35(7):1695–9.CrossRefPubMedGoogle Scholar
  147. Rice-Evans CA, Sampson J, Bramley PM, Holloway DE. Why do we expect carotenoids to be antioxidants in vivo? Free Radic Res. 1997;26(4):381–98.CrossRefPubMedGoogle Scholar
  148. Ried K, Fakler P. Protective effect of lycopene on serum cholesterol and blood pressure: meta-analyses of intervention trials. Maturitas. 2011;68(4):299–310.CrossRefPubMedGoogle Scholar
  149. Riederer P, Sofic E, Rausch WD, et al. Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem. 1989;52(2):515–20.CrossRefPubMedGoogle Scholar
  150. Rothstein JD. Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol. 2009;65 SUPPL 1:S3–9.CrossRefPubMedGoogle Scholar
  151. Sachdeva AK, Chopra K. Lycopene abrogates Aβ(1-42)-mediated neuroinflammatory cascade in an experimental model of Alzheimer’s disease. J Nutr Biochem. 2015;26:736–44.CrossRefPubMedGoogle Scholar
  152. Saher G, Brügger B, Lappe-Siefke C, et al. High cholesterol level is essential for myelin membrane growth. Nat Neurosci. 2005;8(4):468–75.PubMedGoogle Scholar
  153. Santocono M, Zurria M, Berrettini M, Fedeli D, Falcioni G. Influence of astaxanthin, zeaxanthin and lutein on DNA damage and repair in UVA-irradiated cells. J Photochem Photobiol B Biol. 2006;85(3):205–15.CrossRefGoogle Scholar
  154. Sarkar A, Bishayee A, Chatterjee M. Beta-carotene prevents lipid peroxidation and red blood cell membrane protein damage in experimental hepatocarcinogenesis. Cancer Biochem Biophys. 1995;15(2):111–25.PubMedGoogle Scholar
  155. Sastry PS. Lipids of nervous tissue: composition and metabolism. Prog Lipid Res. 1985;24(2):69–176.CrossRefPubMedGoogle Scholar
  156. Sattarova EA, Sinitsyna OI, Vasyunina EA, et al. Age-dependent guanine oxidation in DNA of different brain regions of Wistar rats and prematurely aging OXYS rats. Biochim Biophys Acta. 2013;1830(6):3542–52.CrossRefPubMedGoogle Scholar
  157. Scheider WL, Hershey LA, Vena JE, Holmlund T, Marshall JR, Freudenheim JL. Dietary antioxidants and other dietary factors in the etiology of Parkinson’s disease. Mov Disord. 1997;12(2):190–6.CrossRefPubMedGoogle Scholar
  158. Schenck JF, Zimmerman EA. High-field magnetic resonance imaging of brain iron: birth of a biomarker? NMR Biomed. 2004;17(7):433–45.CrossRefPubMedGoogle Scholar
  159. Selkoe DJ. Alzheimer disease: mechanistic understanding predicts novel therapies. Ann Intern Med. 2004;140(8):627–38.CrossRefPubMedGoogle Scholar
  160. Sheng JG, Mrak RE, Bales KR, et al. Overexpression of the neuritotrophic cytokine S100β precedes the appearance of neuritic β-amyloid plaques in APPV717F mice. J Neurochem. 2000;74(1):295–301.CrossRefPubMedPubMedCentralGoogle Scholar
  161. Shim YS, Kim KJ, Seo D, et al. Simultaneous determination of free capsorubin and capsanthin in red pepper powder using u-HPLC. J AOAC Int. 2013;96(2):341–5.CrossRefPubMedGoogle Scholar
  162. Short KR, Bigelow ML, Kahl J, et al. Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci U S A. 2005;102(15):5618–23.CrossRefPubMedPubMedCentralGoogle Scholar
  163. Simons M, Keller P, De Strooper B, Beyreuther K, Dotti CG, Simons K. Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons. Proc Natl Acad Sci U S A. 1998;95(11):6460–4.CrossRefPubMedPubMedCentralGoogle Scholar
  164. Snodderly DM, Handelman GJ, Adler AJ. Distribution of individual macular pigment carotenoids in central retina of macaque and squirrel monkeys. Invest Ophthalmol Vis Sci. 1991;32(2):268–79.PubMedGoogle Scholar
  165. Song HS, Kim HR, Kim MC, Hwang YH, Sim SS. Lutein is a competitive inhibitor of cytosolic Ca2 + -dependent phospholipase A2. J Pharm Pharmacol. 2010;62(12):1711–6.CrossRefPubMedGoogle Scholar
  166. Spector R, Johanson CE. Vitamin transport and homeostasis in mammalian brain: focus on vitamins B and E. J Neurochem. 2007;103(2):425–38.CrossRefPubMedGoogle Scholar
  167. Stahl W, Sies H. Antioxidant activity of carotenoids. Mol Aspects Med. 2003;24(6):345–51.CrossRefPubMedGoogle Scholar
  168. Suematsu N, Tsutsui H, Wen J, et al. Oxidative stress mediates tumor necrosis factor-α-induced mitochondrial DNA damage and dysfunction in cardiac myocytes. Circulation. 2003;107(10):1418–23.CrossRefPubMedGoogle Scholar
  169. Suganuma H, Hirano T, Arimoto Y, Inakuma T. Effect of tomato intake on striatal monoamine level in a mouse model of experimental Parkinson’s disease. J Nutr Sci Vitaminol. 2002;48(3):251–4.CrossRefPubMedGoogle Scholar
  170. Takashima M, Shichiri M, Hagihara Y, Yoshida Y, Niki E. Capacity of peroxyl radical scavenging and inhibition of lipid peroxidation by β-carotene, lycopene, and commercial tomato juice. Food Funct. 2012;3(11):1153–60.CrossRefPubMedGoogle Scholar
  171. Takeda A, Nyssen OP, Syed A, Jansen E, Bueno-De-Mesquita B, Gallo V. Vitamin A and carotenoids and the risk of Parkinson’s disease: a systematic review and meta-analysis. Neuroepidemiology. 2013;42(1):25–38.CrossRefPubMedGoogle Scholar
  172. Talwar D, Ha TKK, Cooney J, Brownlee C, St. Jo’Reilly D. A routine method for the simultaneous measurement of retinol, α-tocopherol and five carotenoids in human plasma by reverse phase HPLC. Clin Chim Acta. 1998;270(2):85–100.CrossRefPubMedGoogle Scholar
  173. Thornber JP, Peter GF, Nechushtai R. Biochemical composition and structure of photosynthetic pigment proteins from higher plants. Physiol Plant. 1987;71(2):236–40.CrossRefGoogle Scholar
  174. Trevithick-Sutton CC, Foote CS, Collins M, Trevithick JR. The retinal carotenoids zeaxanthin and lutein scavenge superoxide and hydroxyl radicals: a chemiluminescence and ESR study. Mol Vis. 2006;12:1127–35.PubMedGoogle Scholar
  175. Van Bennekum A, Werder M, Thuahnai ST, et al. Class B scavenger receptor-mediated intestinal absorption of dietary β-carotene and cholesterol. Biochemistry. 2005;44(11):4517–25.CrossRefPubMedGoogle Scholar
  176. Waetzig V, Czeloth K, Hidding U, et al. c-Jun N-terminal kinases (JNKs) mediate pro-inflammatory actions of microglia. Glia. 2005;50(3):235–46.CrossRefPubMedGoogle Scholar
  177. Wall MM, Waddell CA, Bosland PW. Variation in β-carotene and total carotenoid content in fruits of Capsicum. HortScience. 2001;36(4):746–9.Google Scholar
  178. Wang H, Leung LK. The carotenoid lycopene differentially regulates phase I and II enzymes in dimethylbenz[a]anthracene-induced MCF-7 cells. Nutrition. 2010;26(11–12):1181–7.CrossRefPubMedGoogle Scholar
  179. Wang T, Qin L, Liu B, et al. Role of reactive oxygen species in LPS-induced production of prostaglandin E2 in microglia. J Neurochem. 2004;88(4):939–47.CrossRefPubMedGoogle Scholar
  180. Wang W, Shinto L, Connor WE, Quinn JF. Nutritional biomarkers in Alzheimer’s disease: the association between carotenoids, n-3 fatty acids, and dementia severity. J Alzheimers Dis. 2008;13(1):31–8.PubMedGoogle Scholar
  181. Wassmann S, Stumpf M, Strehlow K, et al. Interleukin-6 induces oxidative stress and endothelial dysfunction by overexpression of the angiotensin II type 1 receptor. Circ Res. 2004;94(4):534–41.CrossRefPubMedGoogle Scholar
  182. White WS, Stacewicz-Sapuntzakis M, Erdman Jr JW, Bowen PE. Pharmacokinetics of β-carotene and canthaxanthin after ingestion of individual and combined doses by human subjects. J Am Coll Nutr. 1994;13(6):665–71.CrossRefPubMedGoogle Scholar
  183. Wu KLH, Chan SHH, Chan JYH. Neuroinflammation and oxidative stress in rostral ventrolateral medulla contribute to neurogenic hypertension induced by systemic inflammation. J Neuroinflammation. 2012;9:212.PubMedPubMedCentralGoogle Scholar
  184. Wu W, Wang X, Xiang Q, et al. Astaxanthin alleviates brain aging in rats by attenuating oxidative stress and increasing BDNF levels. Food Funct. 2014;5(1):158–66.CrossRefPubMedGoogle Scholar
  185. Yamagata K, Nakayama C, Suzuki K. Dietary β-carotene regulates interleukin-1β-induced expression of apolipoprotein e in astrocytes isolated from stroke-prone spontaneously hypertensive rats. Neurochem Int. 2013;62(1):43–9.CrossRefPubMedGoogle Scholar
  186. Yang JB, Duan ZJ, Yao W, et al. Synergistic transcriptional activation of human Acyl-coenzyme A: cholesterol acyltransterase-1 gene by interferon-γ and all-trans-retinoic acid THP-1 cells. J Biol Chem. 2001;276(24):20989–98.CrossRefPubMedGoogle Scholar
  187. Yang Y, Seo JM, Nguyen A, et al. Astaxanthin-rich extract from the green alga Haematococcus pluvialis lowers plasma lipid concentrations and enhances antioxidant defense in apolipoprotein E knockout mice. J Nutr. 2011;141(9):1611–7.CrossRefPubMedGoogle Scholar
  188. Yasuno F, Tanimukai S, Sasaki M, et al. Combination of antioxidant supplements improved cognitive function in the elderly. J Alzheimers Dis. 2012;32(4):895–903.PubMedGoogle Scholar
  189. Yeum KJ, Booth SL, Sadowski JA, et al. Human plasma carotenoid response to the ingestion of controlled diets high in fruits and vegetables. Am J Clin Nutr. 1996;64(4):594–602.PubMedGoogle Scholar
  190. Yi F, He X, Wang D. Lycopene protects against MPP + -induced cytotoxicity by maintaining mitochondrial function in SH-SY5Y cells. Neurochem Res. 2013;38(8):1747–57.CrossRefPubMedGoogle Scholar
  191. Zaman Z, Roche S, Fielden P, Frost PG, Niriella DC, Cayley ACD. Plasma concentrations of vitamins A and E and carotenoids in Alzheimer’s disease. Age Ageing. 1992;21(2):91–4.CrossRefPubMedGoogle Scholar
  192. Zhang SM, Hernán MA, Chen H, Spiegelman D, Willett WC, Ascherio A. Intakes of vitamins E and C, carotenoids, vitamin supplements, and PD risk. Neurology. 2002;59(8):1161–9.CrossRefPubMedGoogle Scholar
  193. Zhang XS, Zhang X, Wu Q, et al. Astaxanthin offers neuroprotection and reduces neuroinflammation in experimental subarachnoid hemorrhage. J Surg Res. 2014;192(1):206–13.CrossRefPubMedGoogle Scholar
  194. Žnidarčič D, Ban D, Šircelj H. Carotenoid and chlorophyll composition of commonly consumed leafy vegetables in Mediterranean countries. Food Chem. 2011;129(3):1164–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Medical Sciences, Australasian Research InstituteUniversity of NSWSydneyAustralia
  2. 2.Sydney Medical School, Australasian Research InstituteUniversity of SydneySydneyAustralia

Personalised recommendations