Advertisement

Computing Information Integration in Brain Networks

  • Xerxes D. ArsiwallaEmail author
  • Paul Verschure
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9564)

Abstract

How much information do large brain networks integrate as a whole over the sum of their parts? Can the complexity of such networks be quantified in an information-theoretic way and be meaningfully coupled to brain function? Recently, measures of dynamical complexity such as integrated information have been proposed. However, problems related to the normalization and Bell number of partitions associated to these measures make these approaches computationally infeasible for large-scale brain networks. Our goal in this work is to address this problem. Our formulation of network integrated information is based on the Kullback-Leibler divergence between the multivariate distribution on the set of network states versus the corresponding factorized distribution over its parts. We find that implementing the maximum information partition optimizes computations. These methods are well-suited for large networks with linear stochastic dynamics. As an application to brain networks, we compute the integrated information for the human brain’s connectomic data. Compared to a randomly re-wired network, we find that the specific topology of the brain generates greater information complexity.

Keywords

Brain networks Neural dynamics Complexity measures 

Notes

Acknowledgments

This work has been supported by the European Research Council’s CDAC project: “The Role of Consciousness in Adaptive Behavior: A Combined Empirical, Computational and Robot based Approach” (ERC-2013- ADG 341196).

References

  1. 1.
    Arsiwalla, X.D., Betella, A., Martínez, E., Omedas, P., Zucca, R., Verschure, P.: The dynamic connectome: a tool for large scale 3D reconstruction of brain activity in real time. In: Rekdalsbakken, W., Bye, R., Zhang, H., (eds.) 27th European Conference on Modeling and Simulation, ECMS, Alesund, Norway (2013)Google Scholar
  2. 2.
    Arsiwalla, X.D.: Entropy functions with 5D chern-simons terms. J. High Energy Phys. 2009(09), 059 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Arsiwalla, X.D., Dalmazzo, D., Zucca, R., Betella, A., Brandi, S., Martinez, E., Omedas, P., Verschure, P.: Connectomics to semantomics: Addressing the brain’s big data challenge. Procedia Comput. Sci. 53, 48–55 (2015)CrossRefGoogle Scholar
  4. 4.
    Arsiwalla, X.D., Verschure, P.F.: Integrated information for large complex networks. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE (2013)Google Scholar
  5. 5.
    Arsiwalla, X.D., Zucca, R., Betella, A., Martinez, E., Dalmazzo, D., Omedas, P., Deco, G., Verschure, P.: Network dynamics with brainx3: A large-scale simulation of the human brain network with real-time interaction. Front. Neuroinformatics 9(2) (2015). http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2015.00002/abstract
  6. 6.
    Balduzzi, D., Tononi, G.: Integrated information in discrete dynamical systems: motivation and theoretical framework. PLoS Comput. Biol. 4(6), e1000091 (2008)CrossRefGoogle Scholar
  7. 7.
    Barrett, A.B., Barnett, L., Seth, A.K.: Multivariate granger causality and generalized variance. Phys. Rev. E 81(4), 041907 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Barrett, A.B., Seth, A.K.: Practical measures of integrated information for time-series data. PLoS Comput. Biol. 7(1), e1001052 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Betella, A., Bueno, E.M., Kongsantad, W., Zucca, R., Arsiwalla, X.D., Omedas, P., Verschure, P.F.: Understanding large network datasets through embodied interaction in virtual reality. In: Proceedings of the 2014 Virtual Reality International Conference, p. 23. ACM (2014)Google Scholar
  10. 10.
    Betella, A., Cetnarski, R., Zucca, R., Arsiwalla, X.D., Martinez, E., Omedas, P., Mura, A., Verschure, P.F.M.J.: BrainX3: embodied exploration of neural data. In: Virtual Reality International Conference (VRIC 2014), Laval, France (2014)Google Scholar
  11. 11.
    Betella, A., Martínez, E., Zucca, R., Arsiwalla, X.D., Omedas, P., Wierenga, S., Mura, A., Wagner, J., Lingenfelser, F., André, E., et al.: Advanced interfaces to stem the data deluge in mixed reality: placing human (un) consciousness in the loop. In: ACM SIGGRAPH 2013 Posters, p. 68. ACM (2013)Google Scholar
  12. 12.
    Galán, R.F., et al.: On how network architecture determines the dominant patterns of spontaneous neural activity. PLoS One 3(5), e2148 (2008)CrossRefGoogle Scholar
  13. 13.
    Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., Sporns, O.: Mapping the structural core of human cerebral cortex. PLoS Biol. 6(7), 15(2008). http://www.ncbi.nlm.nih.gov/pubmed/18597554
  14. 14.
    Honey, C., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J.P., Meuli, R., Hagmann, P.: Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. 106(6), 2035–2040 (2009)CrossRefGoogle Scholar
  15. 15.
    Oizumi, M., Albantakis, L., Tononi, G.: From the phenomenology to the mechanisms of consciousness: integrated information theory 3.0. PLoS Comput. Biol. 10(5), e1003588 (2014)CrossRefGoogle Scholar
  16. 16.
    Omedas, P., Betella, A., Zucca, R., Arsiwalla, X.D., Pacheco, D., Wagner, J., Lingenfelser, F., Andre, E., Mazzei, D., Lanatá, A., Tognetti, A., de Rossi, D., Grau, A., Goldhoorn, A., Guerra, E., Alquezar, R., Sanfeliu, A., Verschure, P.F.M.J.: XIM-engine: a software framework to support the development of interactive applications that uses conscious and unconscious reactions in immersive mixed reality. In: Proceedings of the 2014 Virtual Reality International Conference, VRIC 2014, pp. 26:1–26:4. ACM (2014). http://doi.acm.org/10.1145/2617841.2620714
  17. 17.
    Tononi, G.: An information integration theory of consciousness. BMC Neurosci. 5(1), 42 (2004)CrossRefGoogle Scholar
  18. 18.
    Tononi, G., Sporns, O.: Measuring information integration. BMC Neurosci. 4(1), 31 (2003)CrossRefGoogle Scholar
  19. 19.
    Tononi, G., Sporns, O., Edelman, G.M.: A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Nat. Acad. Sci. 91(11), 5033–5037 (1994)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Synthetic Perceptive Emotive and Cognitive Systems (SPECS) Lab, Center of Autonomous Systems and NeuroroboticsUniversitat Pompeu FabraBarcelonaSpain
  2. 2.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain

Personalised recommendations