Charge Separation at Nanostructured Molecular Donor–Acceptor Interfaces

  • Andreas Opitz
  • Rupak Banerjee
  • Stefan Grob
  • Mark Gruber
  • Alexander Hinderhofer
  • Ulrich Hörmann
  • Julia Kraus
  • Theresa Linderl
  • Christopher Lorch
  • Andreas Steindamm
  • Anna Katharina Topczak
  • Andreas Wilke
  • Norbert Koch
  • Jens Pflaum
  • Frank Schreiber
  • Wolfgang Brütting
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 272)

Abstract

Planar and bulk heterojunctions of organic donor and acceptor molecules are used to understand elementary processes in photovoltaic cells. The electronic structure, interface and film morphology, excitonic behavior, device characteristics, and correlations between these properties are reviewed here using a wide range of material combinations.

Keywords

Device performance Electronic structure Exciton transport Interface morphology 

References

  1. 1.
    http://www.nrel.gov/ncpv/ (2015). Accessed 9 September
  2. 2.
    Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2015) Solar cell efficiency tables (Version 46). Prog Photovolt Res Appl 23:805–812. doi:10.1002/pip.2637CrossRefGoogle Scholar
  3. 3.
    Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32:510–519. doi:10.1063/1.1736034CrossRefGoogle Scholar
  4. 4.
    Veldman D, Meskers SCJ, Janssen RAJ (2009) The energy of charge-transfer states in electron donor-acceptor blends: insight into the energy losses in organic solar cells. Adv Funct Mater 19:1939–1948. doi:10.1002/adfm.200900090CrossRefGoogle Scholar
  5. 5.
    Clarke TM, Durrant JR (2010) Charge photogeneration in organic solar cells. Chem Rev 110:6736–6767. doi:10.1021/cr900271sCrossRefGoogle Scholar
  6. 6.
    Deibel C, Dyakonov V (2010) Polymerfullerene bulk heterojunction solar cells. Rep Prog Phys 73:096401. doi:10.1088/0034-4885/73/9/096401CrossRefGoogle Scholar
  7. 7.
    Vandewal K, Tvingstedt K, Gadisa A, Inganäs O, Manca JV (2010) Relating the open-circuit voltage to interface molecular properties of donor:acceptor bulk heterojunction solar cells. Phys Rev B 81:125204. doi:10.1103/PhysRevB.81.125204CrossRefGoogle Scholar
  8. 8.
    Opitz A, Wagner J, Brütting W, Salzmann I, Koch N, Manara J, Pflaum J, Hinderhofer A, Schreiber F (2010) Charge separation at molecular donor–acceptor interfaces: correlation between morphology and solar cell performance. IEEE J Sel Top Quant 16:1707–1717. doi:10.1109/JSTQE.2010.2048096CrossRefGoogle Scholar
  9. 9.
    Forrest SR (2011) The limits to organic photovoltaic cell efficiency. MRS Bull 30:28–32. doi:10.1557/mrs2005.5CrossRefGoogle Scholar
  10. 10.
    Wilke A, Mizokuro T, Blum RP, Rabe JP, Koch N (2010) IEEE J Sel Top Quant 16:1732–1737. doi:10.1109/JSTQE.2010.2042035CrossRefGoogle Scholar
  11. 11.
    Salzmann I, Duhm S, Heimel G, Oehzelt M, Kniprath R, Johnson RL, Rabe JP, Koch N (2008) Tuning the ionization energy of organic semiconductor films: the role of intramolecular polar bonds. J Am Chem Soc 130:12870–12871. doi:10.1021/ja804793aCrossRefGoogle Scholar
  12. 12.
    Wagner J, Gruber M, Hinderhofer A, Wilke A, Bröker B, Frisch J, Amsalem P, Vollmer A, Opitz A, Koch N, Schreiber F, Brütting W (2010) High fill factor and open circuit voltage in organic photovoltaic cells with diindenoperylene as donor material. Adv Funct Mater 20:4295–4303. doi:10.1002/adfm.201001028CrossRefGoogle Scholar
  13. 13.
    Pfützner S (2012) Studies on organic solar cells composed of fullerenes and zinc-phthalocyanines. Ph.D. thesis, TU Dresden. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-83486
  14. 14.
    Opitz A, Frisch J, Schlesinger R, Wilke A, Koch N (2013) Energy level alignment at interfaces in organic photovoltaic devices. J Electron Spectrosc Relat Phenom 190:12–24. doi:10.1016/j.elspec.2012.11.008CrossRefGoogle Scholar
  15. 15.
    Lau KM, Tang JX, Sun HY, Lee CS, Lee ST, Yan D (2006) Interfacial electronic structure of copper phthalocyanine and copper hexadecafluorophthalocyanine studied by photoemission. Appl Phys Lett 88:173513. doi:10.1063/1.2198484CrossRefGoogle Scholar
  16. 16.
    Krause S, Casu MB, Schöll A, Umbach E (2008) Determination of transport levels of organic semiconductors by UPS and IPS. New J Phys 10:085001. doi:10.1088/1367-2630/10/8/085001CrossRefGoogle Scholar
  17. 17.
    Wilke A, Endres J, Hörmann U, Niederhausen J, Schlesinger R, Frisch J, Amsalem P, Wagner J, Gruber M, Opitz A, Vollmer A, Brütting W, Kahn A, Koch N (2012) Correlation between interface energetics and open circuit voltage in organic photovoltaic cells. Appl Phys Lett 101:233301. doi:10.1063/1.4769360CrossRefGoogle Scholar
  18. 18.
    Han W, Yoshida H, Ueno N, Kera S (2013) Electron affinity of pentacene thin film studied by radiation-damage free inverse photoemission spectroscopy. Appl Phys Lett 103:123303. doi:10.1063/1.4821445CrossRefGoogle Scholar
  19. 19.
    Brinkmann H, Kelting C, Makarov S, Tsaryova O, Schnurpfeil G, Wöhrle D, Schlettwein D (2008) Fluorinated phthalocyanines as molecular semiconductor thin films. Phys Stat Sol A 205:409–420. doi:10.1002/pssa.200723391CrossRefGoogle Scholar
  20. 20.
    Djurovich PI, Mayo EI, Forrest SR, Thompson ME (2009) Measurement of the lowest unoccupied molecular orbital energies of molecular organic semiconductors. Org Electron 10:515–520. doi:10.1016/j.orgel.2008.12.011CrossRefGoogle Scholar
  21. 21.
    Sze SM, Ng KK (2007) Physics of semiconductor devices, 3rd edn. Wiley, New York. doi:10.1002/0470068329Google Scholar
  22. 22.
    Rand B, Burk D, Forrest S (2007) Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells. Phys Rev B 75:115327. doi:10.1103/PhysRevB.75.115327CrossRefGoogle Scholar
  23. 23.
    Riede M, Mueller T, Tress W, Schueppel R, Leo K (2008) Small-molecule solar cells-status and perspectives. Nanotechnology 19:424001. doi:10.1088/0957-4484/19/42/424001CrossRefGoogle Scholar
  24. 24.
    Stübinger T, Brütting W (2001) Exciton diffusion and optical interference in organic donor–acceptor photovoltaic cells. J Appl Phys 90:3632–3641. doi:10.1063/1.1394920CrossRefGoogle Scholar
  25. 25.
    Grob S, Gruber M, Bartynski AN, Hörmann U, Linderl T, Thompson ME, Brütting W (2014) Amorphous vs crystalline exciton blocking layers at the anode interface in planar and planar-mixed heterojunction organic solar cells. Appl Phys Lett 104:213304. doi:10.1063/1.4879839CrossRefGoogle Scholar
  26. 26.
    Tang CW (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48:183–185. doi:10.1063/1.96937CrossRefGoogle Scholar
  27. 27.
    Yu S, Klimm C, Schäfer P, Rabe JP, Rech B, Koch N (2011) Organic photovoltaic cells with interdigitated structures based on pentacene nanocolumn arrays. Org Electron 12:2180. doi:10.1016/j.orgel.2011.09.021CrossRefGoogle Scholar
  28. 28.
    Yu S, Opitz A, Grob S, Resel R, Oehzelt M, Brütting W, Salzmann I, Koch N (2014) Performance enhancement of diindenoperylene-based organic photovoltaic cells by nanocolumn-arrays. Org. Electron. 15:2210–2217. doi:10.1016/j.orgel.2014.06.023CrossRefGoogle Scholar
  29. 29.
    Salzmann I, Duhm S, Opitz R, Johnson RL, Rabe JP, Koch N (2008) Structural and electronic properties of pentacene-fullerene heterojunctions. J Appl Phys 104:114518. doi:10.1063/1.3040003CrossRefGoogle Scholar
  30. 30.
    Peumans P, Uchida S, Forrest SR (2003) Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature 425:158–162. doi:10.1038/nature01949CrossRefGoogle Scholar
  31. 31.
    Hinderhofer A, Schreiber F (2012) Organic-organic heterostructures: concepts and applications. ChemPhysChem 13:628–643. doi:10.1002/cphc.201100737CrossRefGoogle Scholar
  32. 32.
    Opitz A, Ecker B, Wagner J, Hinderhofer A, Schreiber F, Manara J, Pflaum J, Brütting W (2009) Mixed crystalline films of co-evaporated hydrogen- and fluorine-terminated phthalocyanines and their application in photovoltaic devices. Org Electron 10:1259–1267. doi:10.1016/j.orgel.2009.07.004CrossRefGoogle Scholar
  33. 33.
    Hinderhofer A, Frank C, Hosokai T, Resta A, Gerlach A, Schreiber F (2011) Structure and morphology of coevaporated pentacene-peruoropentacene thin films. J Chem Phys 134:104702. doi:10.1063/1.3557476CrossRefGoogle Scholar
  34. 34.
    Reinhardt JP, Hinderhofer A, Broch K, Heinemeyer U, Kowarik S, Vorobiev A, Gerlach A, Schreiber F (2012) Structural and Optical Properties of Mixed Diindenoperylene–Perfluoropentacene Thin Films. J Phys Chem C 116:10917–10923. doi:10.1021/jp211947yCrossRefGoogle Scholar
  35. 35.
    Opitz A, Wagner J, Brütting W, Hinderhofer A, Schreiber F (2009) Molecular semiconductor blends: Microstructure, charge carrier transport, and application in photovoltaic cells. Phys Stat Sol A 206:2683–2694. doi:10.1002/pssa.200925238CrossRefGoogle Scholar
  36. 36.
    Gruber M, Rawolle M, Wagner J, Magerl D, Hörmann U, Perlich J, Roth SV, Opitz A, Schreiber F, Müller-Buschbaum P, Brütting W (2013) Correlating structure and morphology to device performance of molecular organic donor-acceptor photovoltaic cells based on diindenoperylene (DIP) and C 60. Adv Energy Mater 3:1075–1083. doi:10.1002/aenm.201201012CrossRefGoogle Scholar
  37. 37.
    Ishii H, Sugiyama K, Ito E, Seki K (1999) Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv Mater 11:605–625. doi:10.1002/(SICI)1521-4095(199906)11:8¡605::AID-ADMA605¿3.0.CO;2-QCrossRefGoogle Scholar
  38. 38.
    Cahen D, Kahn A (2003) Electron energetics at surfaces and interfaces: concepts and experiments. Adv Mater 15:271–277. doi:10.1002/adma.200390065CrossRefGoogle Scholar
  39. 39.
    Koch N (2007) Organic electronic devices and their functional interfaces. ChemPhysChem 8:1438–1455. doi:10.1002/cphc.200700177CrossRefGoogle Scholar
  40. 40.
    Ueno N, Kera S (2008) Electron spectroscopy of functional organic thin films: deep insights into valence electronic structure in relation to charge transport property. Prog Surf Sci 83:490–557. doi:10.1016/j.progsurf.2008.10.002CrossRefGoogle Scholar
  41. 41.
    Wu C, Hirose Y, Sirringhaus H, Kahn A (1997) Electron-hole interaction energy in the organic molecular semiconductor PTCDA. Chem Phys Lett 272:43–47. doi:10.1016/S0009-2614(97)00481-8CrossRefGoogle Scholar
  42. 42.
    Oehzelt M, Koch N, Heimel G (2014) Organic semiconductor density of states controls the energy level alignment at electrode interfaces. Nat Commun 5:4174. doi:10.1038/ncomms5174CrossRefGoogle Scholar
  43. 43.
    Wang H, Amsalem P, Heimel G, Salzmann I, Koch N, Oehzelt M (2014) Adv Mater 26:925–930. doi:10.1002/adma.201303467CrossRefGoogle Scholar
  44. 44.
    Akaike K, Koch N, Oehzelt M (2014) Fermi level pinning induced electrostatic fields and band bending at organic heterojunctions. Appl Phys Lett 105:223303. doi:10.1063/1.4903360CrossRefGoogle Scholar
  45. 45.
    Wilke A, Amsalem P, Frisch J, Bröker B, Vollmer A, Koch N (2011) Electric fields induced by energy level pinning at organic heterojunctions. Appl Phys Lett 98:123304. doi:10.1063/1.3571286CrossRefGoogle Scholar
  46. 46.
    Wagner J, Gruber M, Wilke A, Tanaka Y, Topczak K, Steindamm A, Hörmann U, Opitz A, Nakayama Y, Ishii H, Pflaum J, Koch N, Brütting W (2012) Identification of different origins for s-shaped current voltage characteristics in planar heterojunction organic solar cells. J Appl Phys 111:054509. doi:10.1063/1.3692050CrossRefGoogle Scholar
  47. 47.
    Amsalem P, Niederhausen J, Wilke A, Heimel G, Schlesinger R, Winkler S, Vollmer A, Rabe J, Koch N (2013) Role of charge transfer, dipole-dipole interactions, and electrostatics in Fermi-level pinning at a molecular heterojunction on a metal surface. Phys Rev B 87:035440. doi:10.1103/PhysRevB.87.035440CrossRefGoogle Scholar
  48. 48.
    Peumans P, Forrest SR (2001) Very-high-efficiency double-heterostructure copper phthalocyanine/C[sub 60] photovoltaic cells. Appl Phys Lett 79:126–128. doi:10.1063/1.1384001CrossRefGoogle Scholar
  49. 49.
    Steindamm A, Brendel M, Topczak AK, Pflaum J (2012) Thickness dependent effects of an intermediate molecular blocking layer on the optoelectronic characteristics of organic bilayer photovoltaic cells. Appl Phys Lett 101:143302. doi:10.1063/1.4757297CrossRefGoogle Scholar
  50. 50.
    Heremans P, Cheyns D, Rand BP (2009) Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture. Acc Chem Res 42:1740–1747. doi:10.1021/ar9000923CrossRefGoogle Scholar
  51. 51.
    Heinemeyer U, Hinderhofer A, Alonso MI, Ossó JO, Garriga M, Kytka M, Gerlach A, Schreiber F (2008) Uniaxial anisotropy of organic thin films determined by ellipsometry. Phys Stat Sol A 205:927–930. doi:10.1002/pssa.200777765CrossRefGoogle Scholar
  52. 52.
    Heinemeyer U, Scholz R, Gisslén L, Alonso MI, Ossó JO, Garriga M, Hinderhofer A, Kytka M, Kowarik S, Gerlach A, Schreiber F (2008) Excitonphonon coupling in diindenoperylene thin films. Phys Rev B 78:085210. doi:10.1103/PhysRevB.78.085210CrossRefGoogle Scholar
  53. 53.
    Birkholz M (2006) Thin film analysis by X-ray scattering. Wiley-VCH, WeinheimGoogle Scholar
  54. 54.
    Tolan M (1999) X-ray scattering from soft-matter thin films: materials science and basic research. Springer tracts in modern physics. Springer, BerlinGoogle Scholar
  55. 55.
    Forrest SR, Kaplan ML, Schmidt PH (1984) Organic-on-inorganic semiconductor contact barrier diodes. II. Dependence on organic film and metal contact properties. J Appl Phys 56:543–551. doi:10.1063/1.333944Google Scholar
  56. 56.
    Dürr AC, Schreiber F, Kelsch M, Carstanjen HD, Dosch H (2002) Morphology and thermal stability of metal contacts on crystalline organic thin films. Adv Mater 14:961–963. doi:10.1002/1521-4095(20020705)14:13/14¡961::AID-ADMA961¿3.0.CO;2-XCrossRefGoogle Scholar
  57. 57.
    Hinderhofer A, Gerlach A, Broch K, Hosokai T, Yonezawa K, Kato K, Kera S, Ueno N, Schreiber F (2013) Geometric and electronic structure of templated C 60 on diindenoperylene thin films. J Phys Chem C 117:1053–1058. doi:10.1021/jp3106056CrossRefGoogle Scholar
  58. 58.
    Hinderhofer A, Gerlach A, Kowarik S, Zontone F, Krug J, Schreiber F (2010) Smoothing and coherent structure formation in organic-organic heterostructure growth. Eur Phys Lett 91:56002. doi:10.1209/0295-5075/91/56002CrossRefGoogle Scholar
  59. 59.
    Aufderheide A, Broch K, Novák J, Hinderhofer A, Nervo R, Gerlach A, Banerjee R, Schreiber F (2012) Mixing-induced anisotropic correlations in molecular crystalline systems. Phys Rev Lett 109:156102. doi:10.1103/PhysRevLett.109.156102CrossRefGoogle Scholar
  60. 60.
    Kitaigorodsky A (1984) Mixed crystals. Springer series in solid-state sciences. Springer, BerlinGoogle Scholar
  61. 61.
    Broch K, Aufderheide A, Raimondo L, Sassella A, Gerlach A, Schreiber F (2013) Optical properties of blends: Influence of mixing-induced disorder in pentacene:diindenoperylene versus peruoropentacene:diindenoperylene. J Phys Chem C 117:13952–13960. doi:10.1021/jp4019487CrossRefGoogle Scholar
  62. 62.
    Banerjee R, Novák J, Frank C, Lorch C, Hinderhofer A, Gerlach A, Schreiber F. (2013) Evidence for kinetically limited thickness dependent phase separation in organic thin film blends. Phys Rev Lett 110:185506. doi:10.1103/PhysRevLett.110.185506CrossRefGoogle Scholar
  63. 63.
    Broch K, Gerlach A, Lorch C, Dieterle J, Novák J, Hinderhofer A, Schreiber F (2013) Structure formation in peruoropentacene:diindenoperylene blends and its impact on transient effects in the optical properties studied in realtime during growth. J Chem Phys 139:174709. doi:10.1063/1.4827868CrossRefGoogle Scholar
  64. 64.
    Broch K, Bürker C, Dieterle J, Krause S, Gerlach A, Schreiber F (2013) Impact of molecular tilt angle on the absorption spectra of pentacene:peruoropentacene blends. Phys Stat Sol RRL 7:1084–1088. doi:10.1002/pssr.201308085CrossRefGoogle Scholar
  65. 65.
    Topczak AK, Roller T, Engels B, Brütting W, Pflaum J (2014) Nonthermally activated exciton transport in crystalline organic semiconductor thin films. Phys Rev B 89:201203(R). doi:10.1103/PhysRevB.89.201203Google Scholar
  66. 66.
    Lunt RR, Benziger JB, Forrest SR (2010) Relationship between crystalline order and exciton diffusion length in molecular organic semiconductors. Adv Mater 22:1233–1236. doi:10.1002/adma.200902827CrossRefGoogle Scholar
  67. 67.
    Peumans P, Yakimov A, Forrest SR (2003) Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys 93:3693–3723. doi:10.1063/1.1534621CrossRefGoogle Scholar
  68. 68.
    Lunt RR, Giebrink NC, Belak AA, Benziger JB, Forrest SR (2009) Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching. J Appl Phys 105:1233–1236. doi:10.1063/1.3079797CrossRefGoogle Scholar
  69. 69.
    Brendel M, Krause S, Steindamm A, Topczak AK, Sundarraj S, Erk P, Höhla S, Fruehauf N, Koch N, Pflaum J (2015) The effect of gradual fluorination on the properties of FnZnPc thin films and FnZnPc/C-60 bilayer photovoltaic cells. Adv Mater 25:1565–1573. doi:10.1002/adfm.201404434Google Scholar
  70. 70.
    Dürr AC, Schreiber F, Ritley KA, Kruppa V, Krug J, Dosch H, Struth B (2003) Rapid roughening in thin film growth of an organic semiconductor (diindenoperylene). Phys Rev Lett 90:016104. doi:10.1103/PhysRevLett.90.016104CrossRefGoogle Scholar
  71. 71.
    Ghosh AK, Feng T (1978) Merocyanine organic solar cells. J Appl Phys 49:5982–5989. doi:10.1063/1.324566CrossRefGoogle Scholar
  72. 72.
    Settels V, Liu WL, Pflaum J, Fink RF, Engels B (2012) Comparison of the electronic structure of different perylene-based dye-aggregates. J Comput Chem 33:1544–1553. doi:10.1002/jcc.22986CrossRefGoogle Scholar
  73. 73.
    Settels V, Schubert A, Tafipolski M, Liu WL, Stehr V, Topczak AK, Pflaum J, Deibel C, Fink RF, Engel V, Engels B (2014) Identification of ultrafast relaxation processes as a major reason for inefficient exciton diffusion in perylene-based organic semiconductors. J Am Chem Soc 136:9327–9337. doi:10.1021/ja413115hCrossRefGoogle Scholar
  74. 74.
    Gieseking B, Schmeiler T, Müller B, Deibel C, Engels B, Dyakonov V, Pflaum J (2014) Effects of characteristic length scales on the exciton dynamics in rubrene single crystals. Phys Rev B 90:205305. doi:10.1103/PhysRevB.90.205305CrossRefGoogle Scholar
  75. 75.
    Schuenemann C, Petrich A, Schulze R, Wynands D, Meiss J, Hein MP, Jankowski J, Elschner C, Alex J, Hummert M, Eichhorn KJ, Leo K, Riede M (2013) Diindenoperylene derivatives: a model to investigate the path from molecular structure via morphology to solar cell performance. Org Electron 14:1704–1714. doi:10.1016/j.orgel.2013.04.006CrossRefGoogle Scholar
  76. 76.
    Hansen NH, Wunderlich C, Topczak AK, Rohwer E, Schwoerer H, Pflaum J (2013) Exciton interaction with a spatially defined charge accumulation layer in the organic semiconductor diindenoperylene. Phys Rev B 87:241202(R). doi:10.1103/PhysRevB.87.241202Google Scholar
  77. 77.
    Due to the notation of the relative quenching per cent, the nonradiative recombination rate cited in Ref. [76] has to be divided by a factor of 100.Google Scholar
  78. 78.
    Hörmann U, Wagner J, Gruber M, Opitz A, Brütting W (2011) Approaching the ultimate open circuit voltage in thiophene based single junction solar cells by applying diindenoperylene as acceptor. Phys Stat Sol RRL 5:241–243. doi:10.1002/pssr.201105238CrossRefGoogle Scholar
  79. 79.
    Hörmann U, Kraus J, Gruber M, Schuhmair C, Linderl T, Grob S, Kapfinger S, Klein K, Stutzman M, Krenner H, Brütting W (2013) Quantification of energy losses in organic solar cells from temperature-dependent device characteristics. Phys Rev B 88:235307. doi:10.1103/PhysRevB.88.235307CrossRefGoogle Scholar
  80. 80.
    Hörmann U, Lorch C, Hinderhofer A, Gerlach A, Gruber M, Kraus J, Sykora B, Grob S, Linderl T, Wilke A, Opitz A, Hansson R, Anselmo AS, Ozawa Y, Nakayama Y, Ishii H, Koch N, Moons E, Schreiber F, Brütting W (2014) V OC from a morphology point of view: the influence of molecular orientation on the open circuit voltage of organic planar heterojunction solar cells. J Phys Chem C 118:26462–26470. doi:10.1021/jp506180kCrossRefGoogle Scholar
  81. 81.
    Horlet M, Kraus M, Brütting W, Opitz A (2011) Diindenoperylene as ambipolar semiconductor: influence of electrode materials and mobility asymmetry in organic field-effect transistors. Appl Phys Lett 98:233304. doi:10.1063/1.3598423CrossRefGoogle Scholar
  82. 82.
    Gruber M, Wagner J, Klein K, Hörmann U, Opitz A, Stutzmann M, Brütting W (2012) Thermodynamic efficiency limit of molecular donor-acceptor solar cells and its application to diindenoperylene/C60-based planar heterojunction devices. Adv Energy Mater 2:1100–1108. doi:10.1002/aenm.201200077CrossRefGoogle Scholar
  83. 83.
    Rau U (2007) Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys Rev B 76:085303. doi:10.1103/PhysRevB.76.085303CrossRefGoogle Scholar
  84. 84.
    Widmer J, Tietze M, Leo K, Riede M (2013) Open-circuit voltage and effective gap of organic solar cells. Adv Funct Mater 23:5814–5821. doi:10.1002/adfm.201301048CrossRefGoogle Scholar
  85. 85.
    Vandewal K, Tvingstedt K, Gadisa A, Inganäs O, Manca JV (2009) On the origin of the open-circuit voltage of polymer-fullerene solar cells. Nat Mater 8:904–909. doi:10.1038/nmat2548CrossRefGoogle Scholar
  86. 86.
    Tvingstedt K, Malinkiewicz O, Baumann A, Deibel C, Snaith HJ, Dyakonov V, Bolink HJ (2014) Radiative efficiency of lead iodide based perovskite solar cells. Sci Rep 4:6071. doi:10.1038/srep06071CrossRefGoogle Scholar
  87. 87.
    King RR, Bhusari D, Boca A, Larrabee D, Liu XQ, Hong W, Fetzer CM, Law DC, Karam NH (2011) Band gap-voltage offset and energy production in next-generation multijunction solar cells. Prog Photovolt Res Appl 19:797–812. doi:10.1002/pip.1044CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Andreas Opitz
    • 1
  • Rupak Banerjee
    • 3
  • Stefan Grob
    • 4
  • Mark Gruber
    • 4
  • Alexander Hinderhofer
    • 3
  • Ulrich Hörmann
    • 4
  • Julia Kraus
    • 4
  • Theresa Linderl
    • 4
  • Christopher Lorch
    • 3
  • Andreas Steindamm
    • 5
  • Anna Katharina Topczak
    • 5
  • Andreas Wilke
    • 1
  • Norbert Koch
    • 1
    • 2
  • Jens Pflaum
    • 5
    • 6
  • Frank Schreiber
    • 3
  • Wolfgang Brütting
    • 4
  1. 1.Department of PhysicsHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Helmholtz-Zentrum Berlin für Materialien und Energie GmbHBerlinGermany
  3. 3.Institut für Angewandte PhysikEberhard-Karls Universität TübingenTübingenGermany
  4. 4.Institute of PhysicsUniversity of AugsburgAugsburgGermany
  5. 5.Experimental Physics VIJulius Maximilian University of WürzburgWürzburgGermany
  6. 6.Bavarian Center for Applied Energy Research (ZAE Bayern e.V.)WürzburgGermany

Personalised recommendations