Advertisement

Impact of Charge Carrier Mobility and Electrode Selectivity on the Performance of Organic Solar Cells

  • Annika Spies
  • Jeneke Reinhardt
  • Mathias List
  • Birger Zimmermann
  • Uli WürfelEmail author
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 272)

Abstract

Low charge carrier mobilities as often observed for photoactive materials of organic solar cells have significant impact on their performance. They cause accumulation of charge carriers which can be described quantitatively by a nonohmic transport resistance in the framework of an analytical model. Further addressed in this work is surface recombination stemming from insufficient electrode selectivity which is another factor limiting the performance of organic solar cells.

Keywords

Charge carrier mobility Power conversion efficiency Surface recombination 

References

  1. 1.
    Ebenhoch B et al (2015) Org Electron 22:62CrossRefGoogle Scholar
  2. 2.
    Baumann A et al (2012) Adv Mater 24:4381CrossRefGoogle Scholar
  3. 3.
    Lv A et al (2012) Adv Mater 24:2626CrossRefGoogle Scholar
  4. 4.
    Mas-Torrent M et al (2004) J Am Chem Soc 126:984CrossRefGoogle Scholar
  5. 5.
    von Hauff E, Dyakonov V, Parisi J (2005) Sol Energy Mater Sol Cells 87:149CrossRefGoogle Scholar
  6. 6.
    Bässler H (1993) Phys Stat Sol 175:15CrossRefGoogle Scholar
  7. 7.
    Coehoorn R, Pasveer WF, Bobbert PA, Michels MAJ (2005) Phys Rev B 72:155206Google Scholar
  8. 8.
    Yuan Y et al (2014) Nat Commun 5:3005Google Scholar
  9. 9.
    Jurchescu OD, Baas J, Palstra TTM (2004) Appl Phys Lett 84:3061CrossRefGoogle Scholar
  10. 10.
    Jurchescu OD, Popinciuc M, van Wees BJ, Palstra TTM (2007) Adv Mater 19:688CrossRefGoogle Scholar
  11. 11.
    Mihailetchi VD et al (2006) Adv Funct Mater 16:699CrossRefGoogle Scholar
  12. 12.
    Liu Y et al (2014) Nat Commun 5:5293CrossRefGoogle Scholar
  13. 13.
    Clarke TM et al (2012) Org Electron 13:2639CrossRefGoogle Scholar
  14. 14.
    Ludwig GW, Watters RL (1956) Phys Rev 101:1699CrossRefGoogle Scholar
  15. 15.
    Geens W et al (2004) Thin Solid Films 451–452:498CrossRefGoogle Scholar
  16. 16.
    Park JH, Jung EH, Jung JW, Jo WH (2013) Adv Mater 25:2583CrossRefGoogle Scholar
  17. 17.
    Martens T et al. (2003) In: Kafafi ZH (ed) Organic photovoltaics III. International symposium on optical science and technology. Proceedings of SPIE, Seattle, vol 4801, 07 July 2002, p 40Google Scholar
  18. 18.
    Kline RJ, McGehee MD (2006) J Macromol Sci Polym Rev 46:27Google Scholar
  19. 19.
    Oklobia O, Shafai TS (2014) Sol Energy Mater Sol Cells 122:158CrossRefGoogle Scholar
  20. 20.
    van Duren JKJ et al (2004) Adv Funct Mater 14:425CrossRefGoogle Scholar
  21. 21.
    Juška G, Arlauskas K, Viliunas M (2000) Phys Rev Lett 84Google Scholar
  22. 22.
    Juška G, Arlauskas K, Viliunas M, Genevicius K (2000) Phys Rev B 62:16235CrossRefGoogle Scholar
  23. 23.
    Albrecht S et al (2012) J Phys Chem Lett 3:640CrossRefGoogle Scholar
  24. 24.
    Schubert M et al (2013) Phys Rev B 87Google Scholar
  25. 25.
    Mozer AJ et al (2005) Phys Rev B 72Google Scholar
  26. 26.
    Homa B, Andersson M, Inganäs O (2009) Org Electron 10:501CrossRefGoogle Scholar
  27. 27.
    Philippa B et al (2015) Org Electron 16:205CrossRefGoogle Scholar
  28. 28.
    Juška G et al. (2011) Phys Rev B 84Google Scholar
  29. 29.
    Bange S, Schubert M, Neher D (2010) Phys Rev B 81Google Scholar
  30. 30.
    MacKenzie RCI, Kirchartz T, Dibb GFA, Nelson J (2011) J Phys Chem C 115:9806Google Scholar
  31. 31.
    Hanfland R et al (2013) Appl Phys Lett 103:63904CrossRefGoogle Scholar
  32. 32.
    Philippa B et al (2014) Sci Rep 4:5695CrossRefGoogle Scholar
  33. 33.
    Melianas A et al (2014) Adv Funct Mater 24:4507CrossRefGoogle Scholar
  34. 34.
    Kim Y, Yeom HR, Kim JY, Yang C (2013) Energy Environ Sci 6:1909CrossRefGoogle Scholar
  35. 35.
    Armin A et al (2012) Appl Phys Lett 101:83306CrossRefGoogle Scholar
  36. 36.
    Neukom MT, Reinke NA, Ruhstaller B (2011) Sol Energy 85:1250CrossRefGoogle Scholar
  37. 37.
    Foster S et al (2014) Adv Energy Mater 4:1400311Google Scholar
  38. 38.
    Bartesaghi D et al (2015) Nat Commun 6:7083CrossRefGoogle Scholar
  39. 39.
    Stelzl FF, Würfel U (2012) Phys Rev B 86:75315CrossRefGoogle Scholar
  40. 40.
    Stelzl FF (2013) PhD Thesis, Albert-Ludwigs-Universität Freiburg im BreisgauGoogle Scholar
  41. 41.
    Wagenpfahl A et al (2010) Phys Rev B 82Google Scholar
  42. 42.
    Shockley W, Read W (1952) Phys Rev 87:835CrossRefGoogle Scholar
  43. 43.
    Sinton RA, Swanson RM (1987) IEEE Trans Electron Devices 34:1380CrossRefGoogle Scholar
  44. 44.
    Würfel U, Neher D, Spies A, Albrecht S (2015) Nat Commun 6:6951CrossRefGoogle Scholar
  45. 45.
    Schiefer S, Zimmermann B, Glunz SW, Würfel U (2014) IEEE J Photovoltaics 4:271CrossRefGoogle Scholar
  46. 46.
    Schiefer S, Zimmermann B, Würfel U (2014) J Appl Phys 115:44506CrossRefGoogle Scholar
  47. 47.
    Albrecht S et al (2014) J Phys Chem Lett 5:1131CrossRefGoogle Scholar
  48. 48.
    Sinton RA, Cuevas A (eds) (2000) A quasi-steady-state open-circuit voltage method for solar cell characterization. In: Proceedings of the 16th European photovoltaic solar energy conference, Glasgow, UKGoogle Scholar
  49. 49.
    Wolf M, Rauschenbach H (1963) Adv Energy Conversion 3:455CrossRefGoogle Scholar
  50. 50.
    Synopsis, TCAD Sentaurus: Sentaurus device user guide, release H-2013.03 (2013)Google Scholar
  51. 51.
    Vandewal K et al (2009) Nat Mater 8:904CrossRefGoogle Scholar
  52. 52.
    Tvingstedt K et al (2009) J Am Chem Soc 131:11819CrossRefGoogle Scholar
  53. 53.
    Vandewal K et al (2010) Phys Rev B 81:125204CrossRefGoogle Scholar
  54. 54.
    Shockley W, Queisser HJ (1961) J Appl Phys 32:510CrossRefGoogle Scholar
  55. 55.
    Scharber MC et al (2006) Adv Mater 18:789CrossRefGoogle Scholar
  56. 56.
    Kniepert J, Schubert M, Blakesley JC, Neher D (2011) J Phys Chem Lett 2:700CrossRefGoogle Scholar
  57. 57.
    Reinhardt J et al (2014) Adv Energy Mater 4:1400081CrossRefGoogle Scholar
  58. 58.
    Würfel U, Cuevas A, Würfel P (2015) IEEE J Photovoltaics 5:461CrossRefGoogle Scholar
  59. 59.
    Peters CH et al (2011) Adv Energy Mater 1:491CrossRefGoogle Scholar
  60. 60.
    Deibel C, Wagenpfahl A, Dyakonov V (2008) Phys Status Solidi RRL 2:175Google Scholar
  61. 61.
    Kirchartz T, Pieters BE, Taretto K, Rau U (2009) Phys Rev B 80:35334CrossRefGoogle Scholar
  62. 62.
    Mandoc MM, Koster LJA, Blom, PWM (2007) Appl Phys Lett 90:133504Google Scholar
  63. 63.
    Seßler M, Saeed A, Kohlstädt M, Würfel U (2014) Org Electron 15:1407CrossRefGoogle Scholar
  64. 64.
    Ratcliff EL et al (2013) Adv Energy Mater 3:647CrossRefGoogle Scholar
  65. 65.
    Ratcliff EL, Zacher B, Armstrong NR (2011) J Phys Chem Lett 2:1337CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Annika Spies
    • 1
    • 2
  • Jeneke Reinhardt
    • 1
    • 2
  • Mathias List
    • 2
  • Birger Zimmermann
    • 2
  • Uli Würfel
    • 1
    • 2
    Email author
  1. 1.Freiburg Material Research Center (FMF)FreiburgGermany
  2. 2.Fraunhofer Institute for Solar Energy Systems ISEFreiburgGermany

Personalised recommendations