Fundus Image Based Blood Flow Simulation of the Retinal Arteries

  • Andreas Kristen
  • Lachlan Kelsey
  • Erich Wintermantel
  • Barry Doyle
Conference paper


Computational fluid dynamic (CFD) simulations can help to understand the hemodynamics of the retinal vascular network and the microcirculation. Systemic diseases, like hypertension and diabetes, change the geometry of the vasculature in the retina and these changes can be seen with fundus photography. Furthermore, these changes are indicators of cardiovascular diseases. The aim of this study is to create a plane 2D model of the retinal arterial network based on a high-resolution fundus photograph and to perform a CFD simulation. The blood vessels were segmented from the image with the Frangi filter method. A structural fractal tree was implemented to calculate the outflow boundary conditions representing the peripheral vascular bed. With the Frangi filter method and the high-resolution fundus image a comprehensive model of the visible retinal artery network could be achieved. The simulation results show realistic velocity and pressure distributions of the retinal blood flow in a healthy retina compared to in-vivo measurements in the literature. This work is an initial step towards creating comprehensive patient-specific models of the retinal vasculature based on readily available fundus photography.


Optical Coherence Tomography Optic Disc Computational Fluid Dynamic Simulation Central Retinal Artery Fundus Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    ANSYS, Inc, FLUENT 14.5 User Guide (2014)Google Scholar
  2. 2.
    D.L. Brown, R. Cortez, M.L. Minion, Accurate projection methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 168(2), 464–499 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    A. Budai, J. Odstricilik, R. Kollar, J. Jan, T. Kubena, G. Michelson, A public database for the evaluation of fundus image segmentation algorithms, Poster at Fort Lauderdale Convention Center, The Association of Research in Vision and Ophthalmology (ARVO) Annual Meeting in Fort Lauderdale (2011)Google Scholar
  4. 4.
    A. Budai, R. Bock, A. Maier, J. Hornegger, G. Michelson, Robust vessel segmentation in fundus images. Int. J. Biomed. Imaging 2013, 1–11 (2013)CrossRefGoogle Scholar
  5. 5.
    Y.I. Cho, K.R. Kensey, Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows. Biorheology 28(3–4), 241–262 (1991)Google Scholar
  6. 6.
    G. Clough, J.L. Cracowski, Spotlight issue: microcirculation-from a clinical perspective. Microcirculation 19(1), 1–4 (2012)CrossRefGoogle Scholar
  7. 7.
    M. Day, The no-slip condition of fluid dynamics. Erkenntnis 33(3), 285–296 (1990)MathSciNetCrossRefGoogle Scholar
  8. 8.
    T. Gracner, Ocular blood flow velocity determined by color Doppler imaging in diabetic retinopathy. Ophthalmologica 218(4), 237–242 (2004)CrossRefGoogle Scholar
  9. 9.
    G. Guidoboni, A. Harris, S. Cassani, J. Arciero, B. Siesky, A. Amireskandari, L. Tobe, P. Egan, I. Januleviciene, J. Park, Intraocular pressure, blood pressure, and retinal blood flow autoregulation: a mathematical model to clarify their relationship and clinical relevance. Invest. Ophthalmol. Vis. Sci. 55(7), 4105–4118 (2014)CrossRefGoogle Scholar
  10. 10.
    L.D. Hubbard, R.J. Brothers, W.N. King, L.X. Clegg, R. Klein, L.S. Cooper, A.R. Sharrett, M.D. Davis, J. Cai, Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the atherosclerosis risk in communities study. Ophthalmology 106(12), 2269–2280 (1999)CrossRefGoogle Scholar
  11. 11.
    H. Kolb, E. Fernandez, R. Nelson, Facts and Figures Concerning the Human Retina in Webvision: The Organization of the Retina and Visual System (University of Utah, Salt Lake City, 1995)Google Scholar
  12. 12.
    C. Kondermann, D. Kondermann, M. Yan, Blood vessel classification into arteries and veins in retinal images, in Conference Proceedings (2007), pp. 651247–651249Google Scholar
  13. 13.
    G. Liew, M.L. Baker, T.Y. Wong, P.J. Hand, J.J. Wang, P. Mitchell, D.A. De Silva, M.C. Wong, E. Rochtchina, R.I. Lindley, J.M. Wardlaw, G.J. Hankey, Multi-Centre Retinal Stroke Study Group, Differing associations of white matter lesions and lacunar infarction with retinal microvascular signs. Int. J. Stroke 9(7), 921–5 (2014)Google Scholar
  14. 14.
    D. Liu, N.B. Wood, N. Witt, A.D. Hughes, S.A. Thom, X.Y. Xu, Computational analysis of oxygen transport in the retinal arterial network. Curr. Eye Res. 34(11), 945–956 (2009)CrossRefGoogle Scholar
  15. 15.
    J. Malek, T. Azar, B. Nasralli, M. Tekari, H. Kamoun, R. Tourki, Computational analysis of blood flow in the retinal arteries and veins using fundus image. Comput. Math. Appl. 69, 101–116 (2015)CrossRefGoogle Scholar
  16. 16.
    M. Martinez-Perez, Computer analysis of the geometry of the retinal vasculature. Ph.D. thesis, Imperial College London, 2000Google Scholar
  17. 17.
    A. Mendivil, V. Cuartero, Color Doppler echography study of ocular blood flow velocity in patients with proliferative diabetic retinopathy after performance of retinal pan-photocoagulation: 2 years’ follow-up. Rev. Med. Univ. Navarra 42(3), 134–44 (1998)Google Scholar
  18. 18.
    C.D. Murray, The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc. Natl. Acad. Sci. USA 12(3), 207–14 (1926)CrossRefGoogle Scholar
  19. 19.
    M.S. Olufsen, Structured tree outflow condition for blood flow in larger systemic arteries. Am. J. Physiol. Heart Circ. Physiol. 276(1 45-1), 257–268 (1999)Google Scholar
  20. 20.
    M.S. Olufsen, C.S. Peskin, W.Y. Kim, E.M. Pedersen, A. Nadim, J. Larsen, Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann. Biomed. Eng. 28(11), 1281–1299 (2000)CrossRefGoogle Scholar
  21. 21.
    H.D. Papenfuss, J.F. Gross, Microhemodynamics of capillary networks. Biorheology 18(3–6), 673–692 (1981)Google Scholar
  22. 22.
    A.R. Pries, T.W. Secomb, P. Gaehtgens, J.F. Gross, Blood flow in microvascular networks. Experiments and simulation. Circ. Res. 67(4), 826–834 (1990)CrossRefGoogle Scholar
  23. 23.
    A.R. Pries, T.W. Secomb, P. Gaehtgens, Biophysical aspects of blood flow in the microvasculature. Cardiovasc. Res. 32(4), 654–667 (1996)CrossRefGoogle Scholar
  24. 24.
    M. Quigley, S. Cohen, A new pressure attenuation index to evaluate retinal circulation. A link to protective factors in diabetic retinopathy. Arch. Ophthalmol. 117(1), 84–89 (1999)Google Scholar
  25. 25.
    C.E. Riva, J.E. Grunwald, S.H. Sinclair, B.L. Petrig, Blood velocity and volumetric flow rate in human retinal vessels. Invest. Ophthalmol. Vis. Sci. 26(8), 1124–1132 (1985)Google Scholar
  26. 26.
    M.E. Safar, P. Lacolley, Disturbance of macro- and microcirculation: relations with pulse pressure and cardiac organ damage. Am. J. Physiol. Heart Circ. Physiol. 293(1), H1–H7 (2007)CrossRefGoogle Scholar
  27. 27.
    A.K. Schuster, J.E. Fischer, U. Vossmerbaeumer, A retinal snap shot may indicate individual risk for cardiovascular disease - the MIPH eye&health study. Int. J. Cardiol. 180, 30–33 (2015)CrossRefGoogle Scholar
  28. 28.
    B.N. Steele, M.S. Olufsen, C.A. Taylor, Fractal network model for simulating abdominal and lower extremity blood flow during resting and exercise conditions. Comput. Methods Biomech. Biomed. Eng. 10(1), 39–51 (2007)CrossRefGoogle Scholar
  29. 29.
    T. Takahashi, T. Nagaoka, H. Yanagida, T. Saitoh, A. Kamiya, T. Hein, L. Kuo, A. Yoshida, A mathematical model for the distribution of hemodynamic parameters in the human retinal microvascular network. J. Biorheol. 23(2), 77–86 (2009)CrossRefGoogle Scholar
  30. 30.
    B.N. Tillmann, Atlas der Anatomie (Springer, Heidelberg, 2010)Google Scholar
  31. 31.
    Y. Wang, B.A. Bower, J.A. Izatt, O. Tan, D. Huang, In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography. J. Biomed. Opt. 12(4), 041215–041218 (2007)CrossRefGoogle Scholar
  32. 32.
    W. Wells, A. Colchester, S. Delp, A. Frangi, W. Niessen, K. Vincken, M. Viergever, Multiscale Vessel Enhancement Filtering. Lecture Notes in Computer Science, vol. 1496 (Springer, Berlin/Heidelberg, 1998), pp. 130–137Google Scholar
  33. 33.
    M. Zamir, Shear forces and blood vessel radii in the cardiovascular system. J. Gen. Physiol. 69(4), 449–461 (1977)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Andreas Kristen
    • 1
  • Lachlan Kelsey
    • 1
  • Erich Wintermantel
    • 2
  • Barry Doyle
    • 1
  1. 1.Vascular Engineering, School of Mechanical and Chemical EngineeringThe University of Western AustraliaPerthAustralia
  2. 2.Institute of Medical and Polymer Engineering, Faculty of Mechanical EngineeringUniversity of Technology MunichGarchingGermany

Personalised recommendations