Advertisement

Motor-Based Monitoring During Minimally Invasive Lateral Spine Surgery

  • Hesham M. Zakaria
  • Muwaffak AbdulhakEmail author
Chapter

Abstract

The minimally invasive lateral transpsoas approach to the spine requires navigation near important neurological bundles. Injury to these nerves can cause severe pain and neuropathy or permanent weakness along numerous myotomes. During the lateral dissection, motor monitoring is often used to ensure safe access to the spine. This chapter focuses on motor-based monitoring during this approach.

Keywords

Nerve Injury Interbody Fusion Psoas Muscle Lateral Cutaneous Femoral Nerve Myogenic Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Stern MB. Early experience with percutaneous lateral discectomy. Clin Orthop Relat Res. 1989;238:50–5.Google Scholar
  2. 2.
    Farny J, Drolet P, Girard M. Anatomy of the posterior approach to the lumbar plexus block. Can J Anaesth. 1994;41:480–5. doi: 10.1007/BF03011541.CrossRefPubMedGoogle Scholar
  3. 3.
    Mayer HM. A new microsurgical technique for minimally invasive anterior lumbar interbody fusion. Spine (Phila Pa 1976). 1997;22:691–9; discussion 700.CrossRefGoogle Scholar
  4. 4.
    McAfee PC, Regan JJ, Geis WP, Fedder IL. Minimally invasive anterior retroperitoneal approach to the lumbar spine. Emphasis on the lateral BAK. Spine (Phila Pa 1976). 1998;23:1476–84.CrossRefGoogle Scholar
  5. 5.
    Pimenta L, Diaz RC, Guerrero LG. Charite lumbar artificial disc retrieval: use of a lateral minimally invasive technique. Technical note. J Neurosurg Spine. 2006;5:556–61. doi: 10.3171/spi.2006.5.6.556.CrossRefPubMedGoogle Scholar
  6. 6.
    Ozgur BM, Aryan HE, Pimenta L, Taylor WR. Extreme Lateral Interbody Fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006;6:435–43. doi: 10.1016/j.spinee.2005.08.012.CrossRefPubMedGoogle Scholar
  7. 7.
    Moro T, Kikuchi S, Konno S, Yaginuma H. An anatomic study of the lumbar plexus with respect to retroperitoneal endoscopic surgery. Spine (Phila Pa 1976). 2003;28:423–8. doi: 10.1097/01.BRS.0000049226.87064.3B; discussion 427–8.Google Scholar
  8. 8.
    Regev GJ, Chen L, Dhawan M, Lee YP, Garfin SR, Kim CW. Morphometric analysis of the ventral nerve roots and retroperitoneal vessels with respect to the minimally invasive lateral approach in normal and deformed spines. Spine (Phila Pa 1976). 2009;34:1330–5. doi: 10.1097/BRS.0b013e3181a029e1.CrossRefGoogle Scholar
  9. 9.
    Benglis DM, Vanni S, Levi AD. An anatomical study of the lumbosacral plexus as related to the minimally invasive transpsoas approach to the lumbar spine. J Neurosurg Spine. 2009;10:139–44. doi: 10.3171/2008.10.spi08479.CrossRefPubMedGoogle Scholar
  10. 10.
    Uribe JS, Arredondo N, Dakwar E, Vale FL. Defining the safe working zones using the minimally invasive lateral retroperitoneal transpsoas approach: an anatomical study. J Neurosurg Spine. 2010;13:260–6. doi: 10.3171/2010.3.spine09766.CrossRefPubMedGoogle Scholar
  11. 11.
    Park DK, Lee MJ, Lin EL, Singh K, An HS, Phillips FM. The relationship of intrapsoas nerves during a transpsoas approach to the lumbar spine: anatomic study. J Spinal Disord Tech. 2010;23:223–8. doi: 10.1097/BSD.0b013e3181a9d540.CrossRefPubMedGoogle Scholar
  12. 12.
    Dakwar E, Vale FL, Uribe JS. Trajectory of the main sensory and motor branches of the lumbar plexus outside the psoas muscle related to the lateral retroperitoneal transpsoas approach. J Neurosurg Spine. 2011;14:290–5. doi: 10.3171/2010.10.SPINE10395.CrossRefPubMedGoogle Scholar
  13. 13.
    Kepler CK, Bogner EA, Herzog RJ, Huang RC. Anatomy of the psoas muscle and lumbar plexus with respect to the surgical approach for lateral transpsoas interbody fusion. Eur Spine J. 2011;20:550–6. doi: 10.1007/s00586-010-1593-5.CrossRefPubMedGoogle Scholar
  14. 14.
    Banagan K, Gelb D, Poelstra K, Ludwig S. Anatomic mapping of lumbar nerve roots during a direct lateral transpsoas approach to the spine: a cadaveric study. Spine (Phila Pa 1976). 2011;36:E687–91. doi: 10.1097/BRS.0b013e3181ec5911.CrossRefGoogle Scholar
  15. 15.
    Olmarker K, Holm S, Rydevik B. Importance of compression onset rate for the degree of impairment of impulse propagation in experimental compression injury of the porcine cauda equina. Spine (Phila Pa 1976). 1990;15:416–9.CrossRefGoogle Scholar
  16. 16.
    Pedowitz RA, Garfin SR, Massie JB, Hargens AR, Swenson MR, Myers RR, Rydevik BL. Effects of magnitude and duration of compression on spinal nerve root conduction. Spine (Phila Pa 1976). 1992;17:194–9.CrossRefGoogle Scholar
  17. 17.
    Cornefjord M, Olmarker K, Farley DB, Weinstein JN, Rydevik B. Neuropeptide changes in compressed spinal nerve roots. Spine (Phila Pa 1976). 1995;20:670–3.CrossRefGoogle Scholar
  18. 18.
    Matsui H, Kitagawa H, Kawaguchi Y, Tsuji H. Physiologic changes of nerve root during posterior lumbar discectomy. Spine (Phila Pa 1976). 1995;20:654–9.CrossRefGoogle Scholar
  19. 19.
    Cornefjord M, Sato K, Olmarker K, Rydevik B, Nordborg C. A model for chronic nerve root compression studies. Presentation of a porcine model for controlled, slow-onset compression with analyses of anatomic aspects, compression onset rate, and morphologic and neurophysiologic effects. Spine (Phila Pa 1976). 1997;22:946–57.CrossRefGoogle Scholar
  20. 20.
    Dezawa A, Unno K, Yamane T, Miki H. Changes in the microhemodynamics of nerve root retraction in patients with lumbar spinal canal stenosis. Spine (Phila Pa 1976). 2002;27:2844–9. doi: 10.1097/01.BRS.0000035724.37040.BE.CrossRefGoogle Scholar
  21. 21.
    Valone 3rd F, Lyon R, Lieberman J, Burch S. Efficacy of transcranial motor evoked potentials, mechanically elicited electromyography, and evoked electromyography to assess nerve root function during sustained compression in a porcine model. Spine (Phila Pa 1976). 2014;39:E989–93. doi: 10.1097/BRS.0000000000000442.CrossRefGoogle Scholar
  22. 22.
    Ahn H, Fehlings MG. Prevention, identification, and treatment of perioperative spinal cord injury. Neurosurg Focus. 2008;25:E15. doi: 10.3171/FOC.2008.25.11.E15.CrossRefPubMedGoogle Scholar
  23. 23.
    Kelleher MO, Tan G, Sarjeant R, Fehlings MG. Predictive value of intraoperative neurophysiological monitoring during cervical spine surgery: a prospective analysis of 1055 consecutive patients. J Neurosurg Spine. 2008;8:215–21. doi: 10.3171/SPI/2008/8/3/215.CrossRefPubMedGoogle Scholar
  24. 24.
    Gonzalez AA, Jeyanandarajan D, Hansen C, Zada G, Hsieh PC. Intraoperative neurophysiological monitoring during spine surgery: a review. Neurosurg Focus. 2009;27:E6. doi: 10.3171/2009.8.FOCUS09150.CrossRefPubMedGoogle Scholar
  25. 25.
    Fehlings MG, Brodke DS, Norvell DC, Dettori JR. The evidence for intraoperative neurophysiological monitoring in spine surgery: does it make a difference? Spine (Phila Pa 1976). 2010;35:S37–46. doi: 10.1097/BRS.0b013e3181d8338e.CrossRefGoogle Scholar
  26. 26.
    Hardenbrook MA, Miller LE, Block JE. TranS1 VEO system: a novel psoas-sparing device for transpsoas lumbar interbody fusion. Med Devices (Auckl). 2013;6:91–5. doi: 10.2147/MDER.S43746.Google Scholar
  27. 27.
    Acosta Jr FL, Drazin D, Liu JC. Supra-psoas shallow docking in lateral interbody fusion. Neurosurgery. 2013;73:ons48–51. doi: 10.1227/NEU.0b013e318288a202; discussion ons52.CrossRefPubMedGoogle Scholar
  28. 28.
    Aghayev K, Vrionis FD. Mini-open lateral retroperitoneal lumbar spine approach using psoas muscle retraction technique. Technical report and initial results on six patients. Eur Spine J. 2013;22:2113–9. doi: 10.1007/s00586-013-2931-1.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ohtori S, Orita S, Yamauchi K, Eguchi Y, Ochiai N, Kishida S, Kuniyoshi K, Aoki Y, Nakamura J, Ishikawa T, Miyagi M, Kamoda H, Suzuki M, Kubota G, Sakuma Y, Oikawa Y, Inage K, Sainoh T, Sato J, Fujimoto K, Shiga Y, Abe K, Toyone T, Inoue G, Takahashi K. Mini-open anterior retroperitoneal lumbar interbody fusion: oblique lateral interbody fusion for lumbar spinal degeneration disease. Yonsei Med J. 2015;56:1051–9. doi: 10.3349/ymj.2015.56.4.1051.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Clements DH, Morledge DE, Martin WH, Betz RR. Evoked and spontaneous electromyography to evaluate lumbosacral pedicle screw placement. Spine (Phila Pa 1976). 1996;21:600–4.CrossRefGoogle Scholar
  31. 31.
    Sutter M, Deletis V, Dvorak J, Eggspuehler A, Grob D, Macdonald D, Mueller A, Sala F, Tamaki T. Current opinions and recommendations on multimodal intraoperative monitoring during spine surgeries. Eur Spine J. 2007;16 Suppl 2:S232–7. doi: 10.1007/s00586-007-0421-z.CrossRefPubMedGoogle Scholar
  32. 32.
    Sutter M, Eggspuehler A, Grob D, Jeszenszky D, Benini A, Porchet F, Mueller A, Dvorak J. The diagnostic value of multimodal intraoperative monitoring (MIOM) during spine surgery: a prospective study of 1,017 patients. Eur Spine J. 2007;16 Suppl 2:S162–70. doi: 10.1007/s00586-007-0418-7.CrossRefPubMedGoogle Scholar
  33. 33.
    Sutter M, Eggspuehler A, Muller A, Dvorak J. Multimodal intraoperative monitoring: an overview and proposal of methodology based on 1,017 cases. Eur Spine J. 2007;16 Suppl 2:S153–61. doi: 10.1007/s00586-007-0417-8.CrossRefPubMedGoogle Scholar
  34. 34.
    Deletis V. Basic methodological principles of multimodal intraoperative monitoring during spine surgeries. Eur Spine J. 2007;16 Suppl 2:S147–52. doi: 10.1007/s00586-007-0429-4.CrossRefPubMedGoogle Scholar
  35. 35.
    Bindal RK, Ghosh S. Intraoperative electromyography monitoring in minimally invasive transforaminal lumbar interbody fusion. J Neurosurg Spine. 2007;6:126–32. doi: 10.3171/spi.2007.6.2.126.CrossRefPubMedGoogle Scholar
  36. 36.
    Knight RQ, Schwaegler P, Hanscom D, Roh J. Direct lateral lumbar interbody fusion for degenerative conditions: early complication profile. J Spinal Disord Tech. 2009;22:34–7. doi: 10.1097/BSD.0b013e3181679b8a.CrossRefPubMedGoogle Scholar
  37. 37.
    Dakwar E, Cardona RF, Smith DA, Uribe JS. Early outcomes and safety of the minimally invasive, lateral retroperitoneal transpsoas approach for adult degenerative scoliosis. Neurosurg Focus. 2010;28:E8. doi: 10.3171/2010.1.focus09282.CrossRefPubMedGoogle Scholar
  38. 38.
    Oliveira L, Marchi L, Coutinho E, Pimenta L. A radiographic assessment of the ability of the extreme lateral interbody fusion procedure to indirectly decompress the neural elements. Spine (Phila Pa 1976). 2010;35:S331–7. doi: 10.1097/BRS.0b013e3182022db0.CrossRefGoogle Scholar
  39. 39.
    Ozgur BM, Agarwal V, Nail E, Pimenta L. Two-year clinical and radiographic success of minimally invasive lateral transpsoas approach for the treatment of degenerative lumbar conditions. SAS J. 2010;4:41–6. doi: 10.1016/j.esas.2010.03.005.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Smith WD, Dakwar E, Le TV, Christian G, Serrano S, Uribe JS. Minimally invasive surgery for traumatic spinal pathologies: a mini-open, lateral approach in the thoracic and lumbar spine. Spine (Phila Pa 1976). 2010;35:S338–46. doi: 10.1097/BRS.0b013e3182023113.CrossRefGoogle Scholar
  41. 41.
    Rodgers WB, Cox CS, Gerber EJ. Early complications of extreme lateral interbody fusion in the obese. J Spinal Disord Tech. 2010;23:393–7. doi: 10.1097/BSD.0b013e3181b31729.CrossRefPubMedGoogle Scholar
  42. 42.
    Youssef JA, McAfee PC, Patty CA, Raley E, DeBauche S, Shucosky E, Chotikul L. Minimally invasive surgery: lateral approach interbody fusion: results and review. Spine (Phila Pa 1976). 2010;35:S302–11. doi: 10.1097/BRS.0b013e3182023438.CrossRefGoogle Scholar
  43. 43.
    Tohmeh AG, Rodgers WB, Peterson MD. Dynamically evoked, discrete-threshold electromyography in the extreme lateral interbody fusion approach. J Neurosurg Spine. 2011;14:31–7. doi: 10.3171/2010.9.spine09871.CrossRefPubMedGoogle Scholar
  44. 44.
    Berjano P, Lamartina C. Minimally invasive lateral transpsoas approach with advanced neurophysiologic monitoring for lumbar interbody fusion. Eur Spine J. 2011;20:1584–6. doi: 10.1007/s00586-011-1997-x.CrossRefPubMedGoogle Scholar
  45. 45.
    Bendersky M, Sola C, Muntadas J, Gruenberg M, Calligaris S, Mereles M, Valacco M, Bassani J, Nicolas M. Monitoring lumbar plexus integrity in extreme lateral transpsoas approaches to the lumbar spine: a new protocol with anatomical bases. Eur Spine J. 2015;24:1051–7. doi: 10.1007/s00586-015-3801-9.CrossRefPubMedGoogle Scholar
  46. 46.
    Galloway GM. Direct lateral transpsoas approach to interbody fusion – may be risky after all. J Clin Neurophysiol. 2011;28:605–6. doi: 10.1097/WNP.0b013e31823db011.CrossRefPubMedGoogle Scholar
  47. 47.
    Berjano P, Gautschi OP, Schils F, Tessitore E. Extreme lateral interbody fusion (XLIF(R)): how I do it. Acta Neurochir (Wien). 2015;157:547–51. doi: 10.1007/s00701-014-2248-9.CrossRefGoogle Scholar
  48. 48.
    Uribe JS, Vale FL, Dakwar E. Electromyographic monitoring and its anatomical implications in minimally invasive spine surgery. Spine (Phila Pa 1976). 2010;35:S368–74. doi: 10.1097/BRS.0b013e3182027976.CrossRefGoogle Scholar
  49. 49.
    Pumberger M, Hughes AP, Huang RR, Sama AA, Cammisa FP, Girardi FP. Neurologic deficit following lateral lumbar interbody fusion. Eur Spine J. 2012;21:1192–9. doi: 10.1007/s00586-011-2087-9.CrossRefPubMedGoogle Scholar
  50. 50.
    Uribe JS, Isaacs RE, Youssef JA, Khajavi K, Balzer JR, Kanter AS, Kuelling FA, Peterson MD. Can triggered electromyography monitoring throughout retraction predict postoperative symptomatic neuropraxia after XLIF? Results from a prospective multicenter trial. Eur Spine J. 2015;24 Suppl 3:378–85. doi: 10.1007/s00586-015-3871-8.CrossRefPubMedGoogle Scholar
  51. 51.
    Isaacs RE, Hyde J, Goodrich JA, Rodgers WB, Phillips FM. A prospective, nonrandomized, multicenter evaluation of extreme lateral interbody fusion for the treatment of adult degenerative scoliosis: perioperative outcomes and complications. Spine (Phila Pa 1976). 2010;35:S322–30. doi: 10.1097/BRS.0b013e3182022e04.CrossRefGoogle Scholar
  52. 52.
    Rodgers WB, Gerber EJ, Patterson J. Intraoperative and early postoperative complications in extreme lateral interbody fusion: an analysis of 600 cases. Spine (Phila Pa 1976). 2011;36:26–32. doi: 10.1097/BRS.0b013e3181e1040a.CrossRefGoogle Scholar
  53. 53.
    Cummock MD, Vanni S, Levi AD, Yu Y, Wang MY. An analysis of postoperative thigh symptoms after minimally invasive transpsoas lumbar interbody fusion. J Neurosurg Spine. 2011;15:11–8. doi: 10.3171/2011.2.SPINE10374.CrossRefPubMedGoogle Scholar
  54. 54.
    Dakwar E, Le TV, Baaj AA, Le AX, Smith WD, Akbarnia BA, Uribe JS. Abdominal wall paresis as a complication of minimally invasive lateral transpsoas interbody fusion. Neurosurg Focus. 2011;31:E18. doi: 10.3171/2011.7.focus11164.CrossRefPubMedGoogle Scholar
  55. 55.
    Houten JK, Alexandre LC, Nasser R, Wollowick AL. Nerve injury during the transpsoas approach for lumbar fusion. J Neurosurg Spine. 2011;15:280–4. doi: 10.3171/2011.4.SPINE1127.CrossRefPubMedGoogle Scholar
  56. 56.
    Moller DJ, Slimack NP, Acosta Jr FL, Koski TR, Fessler RG, Liu JC. Minimally invasive lateral lumbar interbody fusion and transpsoas approach-related morbidity. Neurosurg Focus. 2011;31:E4. doi: 10.3171/2011.7.focus11137.CrossRefPubMedGoogle Scholar
  57. 57.
    Sharma AK, Kepler CK, Girardi FP, Cammisa FP, Huang RC, Sama AA. Lateral lumbar interbody fusion: clinical and radiographic outcomes at 1 year: a preliminary report. J Spinal Disord Tech. 2011;24:242–50. doi: 10.1097/BSD.0b013e3181ecf995.CrossRefPubMedGoogle Scholar
  58. 58.
    Cahill KS, Martinez JL, Wang MY, Vanni S, Levi AD. Motor nerve injuries following the minimally invasive lateral transpsoas approach. J Neurosurg Spine. 2012;17:227–31. doi: 10.3171/2012.5.spine1288.CrossRefPubMedGoogle Scholar
  59. 59.
    Berjano P, Balsano M, Buric J, Petruzzi M, Lamartina C. Direct lateral access lumbar and thoracolumbar fusion: preliminary results. Eur Spine J. 2012;21 Suppl 1:S37–42. doi: 10.1007/s00586-012-2217-z.CrossRefPubMedGoogle Scholar
  60. 60.
    Ahmadian A, Deukmedjian AR, Abel N, Dakwar E, Uribe JS. Analysis of lumbar plexopathies and nerve injury after lateral retroperitoneal transpsoas approach: diagnostic standardization. J Neurosurg Spine. 2013;18:289–97. doi: 10.3171/2012.11.SPINE12755.CrossRefPubMedGoogle Scholar
  61. 61.
    Le TV, Burkett CJ, Deukmedjian AR, Uribe JS. Postoperative lumbar plexus injury after lumbar retroperitoneal transpsoas minimally invasive lateral interbody fusion. Spine (Phila Pa 1976). 2013;38:E13–20. doi: 10.1097/BRS.0b013e318278417c.CrossRefGoogle Scholar
  62. 62.
    Hrabalek L, Sternbersky J, Adamus M. Risk of sympathectomy after anterior and lateral lumbar interbody fusion procedures. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2015;159:318–26. doi: 10.5507/bp.2013.083.PubMedGoogle Scholar
  63. 63.
    Ibitoye MO, Hamzaid NA, Zuniga JM, Abdul Wahab AK. Mechanomyography and muscle function assessment: a review of current state and prospects. Clin Biomech (Bristol, Avon). 2014;29:691–704. doi: 10.1016/j.clinbiomech.2014.04.003.CrossRefGoogle Scholar
  64. 64.
    Malek MH, Coburn JW. The utility of electromyography and mechanomyography for assessing neuromuscular function: a noninvasive approach. Phys Med Rehabil Clin North Am. 2012;23(23–32):ix. doi: 10.1016/j.pmr.2011.11.005.Google Scholar
  65. 65.
    Islam MA, Sundaraj K, Ahmad RB, Ahamed NU. Mechanomyogram for muscle function assessment: a review. PLoS One. 2013;8:e58902. doi: 10.1371/journal.pone.0058902.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Alves N, Chau T. Stationary distributions of mechanomyogram signals from isometric contractions of extrinsic hand muscles during functional grasping. J Electromyogr Kinesiol. 2008;18:509–15. doi: 10.1016/j.jelekin.2006.11.010.CrossRefPubMedGoogle Scholar
  67. 67.
    Xie HB, Zheng YP, Guo JY. Classification of the mechanomyogram signal using a wavelet packet transform and singular value decomposition for multifunction prosthesis control. Physiol Meas. 2009;30:441–57. doi: 10.1088/0967-3334/30/5/002.CrossRefPubMedGoogle Scholar
  68. 68.
    Bergey DL, Villavicencio AT, Goldstein T, Regan JJ. Endoscopic lateral transpsoas approach to the lumbar spine. Spine (Phila Pa 1976). 2004;29:1681–8.CrossRefGoogle Scholar
  69. 69.
    Wang MY, Mummaneni PV. Minimally invasive surgery for thoracolumbar spinal deformity: initial clinical experience with clinical and radiographic outcomes. Neurosurg Focus. 2010;28:E9. doi: 10.3171/2010.1.FOCUS09286.CrossRefPubMedGoogle Scholar
  70. 70.
    Tormenti MJ, Maserati MB, Bonfield CM, Okonkwo DO, Kanter AS. Complications and radiographic correction in adult scoliosis following combined transpsoas extreme lateral interbody fusion and posterior pedicle screw instrumentation. Neurosurg Focus. 2010;28:E7. doi: 10.3171/2010.1.focus09263.CrossRefPubMedGoogle Scholar
  71. 71.
    Rodgers WB, Lehmen JA, Gerber EJ, Rodgers JA. Grade 2 spondylolisthesis at L4-5 treated by XLIF: safety and midterm results in the “worst case scenario”. Sci World J. 2012;2012:356712. doi: 10.1100/2012/356712.CrossRefGoogle Scholar
  72. 72.
    Lehmen JA, Gerber EJ. MIS lateral spine surgery: a systematic literature review of complications, outcomes, and economics. Eur Spine J. 2015;24 Suppl 3:287–313. doi: 10.1007/s00586-015-3886-1.CrossRefPubMedGoogle Scholar
  73. 73.
    Deletis V, Rodi Z, Amassian VE. Neurophysiological mechanisms underlying motor evoked potentials in anesthetized humans. Part 2: relationship between epidural and muscle recorded MEPs in man. Clin Neurophysiol. 2001;112:445–52.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.NeurosurgeryHenry Ford Health SystemDetroitUSA

Personalised recommendations