Rotational Thromboelastometry (ROTEM®)

  • Klaus GörlingerEmail author
  • Daniel Dirkmann
  • Alexander A. Hanke


Thromboelastometry (ROTEM®) is an advancement of the classical thromboelastography. Several technical enhancements made the device more robust and user-friendly, reduced intra- and inter-operator variability, and improved the diagnostic performance. This allows for using the device at the bedside in a mobile way and in a multiuser environment, even in military settings. The ROTEM® device is not only able to detect multiple aspects of trauma-induced coagulopathy (TIC) and disseminated intravascular coagulation (DIC), but it allows for prediction of bleeding, massive transfusion, thrombosis, and mortality, too. Furthermore, the ROTEM® device is designed to guide hemostatic therapy with allogeneic blood products (RBC, FFP, cryoprecipitate, and platelets) and in particular with specific coagulation factor concentrates (fibrinogen concentrate, prothrombin complex concentrate (PCC), factor XIII concentrate, and rFVIIa). Here, the combination of specific ROTEM® assays improved the diagnostic performance, significantly. Finally, the implementation of ROTEM®-guided bleeding management algorithms (“Theragnostic Approach”) has been shown to reduce transfusion requirements, complication rates, morbidity, mortality, and hospital costs in trauma and other clinical settings.


Thromboelastometry Viscoelastic testing Platelet function analysis Trauma Coagulopathy Fibrinolysis Hemorrhage Thrombosis Transfusion Goal-directed therapy 


  1. 1.
    Hartert H. Blutgerinnungsstudien mit der Thrombe-lastographie, einem neuen Untersuchungsverfahren. Klin Wschr. 1948;26(37/38):577–83.Google Scholar
  2. 2.
    Calatzis A, Fritzsche P, Calatzis A, Kling M, Hipp R, Sternberger A. A comparison of the technical principle of the ROTEG coagulation analyser and conventional thrombelastographic systems. Ann Hematol. 1996;72(1 Suppl):P90.Google Scholar
  3. 3.
    Mauch J, Spielmann N, Hartnack S, Madjdpour C, Kutter AP, Bettschart-Wolfensberger R, Weiss M, Haas T. Intrarater and interrater variability of point of care coagulation testing using the ROTEM delta. Blood Coagul Fibrinolysis. 2011;22(8):662–6. doi: 10.1097/MBC.0b013e32834aa806.PubMedCrossRefGoogle Scholar
  4. 4.
    Haas T, Spielmann N, Mauch J, Speer O, Schmugge M, Weiss M. Reproducibility of thrombelastometry (ROTEM®): point-of-care versus hospital laboratory performance. Scand J Clin Lab Invest. 2012;72(4):313–7. doi: 10.3109/00365513.2012.665474.PubMedCrossRefGoogle Scholar
  5. 5.
    Anderson L, Quasim I, Steven M, Moise SF, Shelley B, Schraag S, Sinclair A. Interoperator and intraoperator variability of whole blood coagulation assays: a comparison of thromboelastography and rotational thromboelastometry. J Cardiothorac Vasc Anesth. 2014. pii:S1053-0770(14)00254-7. doi: 10.1053/j.jvca.2014.05.023 [Epub ahead of print].
  6. 6.
    Larsen OH, Fenger-Eriksen C, Christiansen K, Ingerslev J, Sørensen B. Diagnostic performance and therapeutic consequence of thromboelastometry activated by kaolin versus a panel of specific reagents. Anesthesiology. 2011;115(2):294–302. doi: 10.1097/ALN.0b013e318220755c.PubMedCrossRefGoogle Scholar
  7. 7.
    Doran CM, Woolley T, Midwinter MJ. Feasibility of using rotational thromboelastometry to assess coagulation status of combat casualties in a deployed setting. J Trauma. 2010;69 Suppl 1:S40–8. doi: 10.1097/TA.0b013e3181e4257b.PubMedCrossRefGoogle Scholar
  8. 8.
    Tarmey NT, Woolley T, Jansen JO, Doran CM, Easby D, Wood PR, Midwinter MJ. Evolution of coagulopathy monitoring in military damage-control resuscitation. J Trauma Acute Care Surg. 2012;73(6 Suppl 5):S417–22. doi: 10.1097/TA.0b013e31827546c0.PubMedCrossRefGoogle Scholar
  9. 9.
    Woolley T, Midwinter M, Spencer P, Watts S, Doran C, Kirkman E. Utility of interim ROTEM® values of clot strength, A5 and A10, in predicting final assessment of coagulation status in severely injured battle patients. Injury. 2013;44(5):593–9. doi: 10.1016/j.injury.2012.03.018.PubMedCrossRefGoogle Scholar
  10. 10.
    Keene DD, Nordmann GR, Woolley T. Rotational thromboelastometry-guided trauma resuscitation. Curr Opin Crit Care. 2013;19(6):605–12. doi: 10.1097/MCC.0000000000000021.PubMedGoogle Scholar
  11. 11.
    Benson G. Rotational thromboelastometry and its use in directing the management of coagulopathy in the battle injured trauma patient. J Perioper Pract. 2014;24(1–2):25–8.PubMedGoogle Scholar
  12. 12.
    Modesti PA, Rapi S, Paniccia R, Bilo G, Revera M, Agostoni P, Piperno A, Cambi GE, Rogolino A, Biggeri A, Mancia G, Gensini GF, Abbate R, Parati G. Index measured at an intermediate altitude to predict impending acute mountain sickness. Med Sci Sports Exerc. 2011;43(10):1811–8. doi: 10.1249/MSS.0b013e31821b55df.PubMedCrossRefGoogle Scholar
  13. 13.
    Rahe-Meyer N, Solomon C, Vorweg M, Becker S, Stenger K, Winterhalter M, Lang T. Multicentric comparison of single portion reagents and liquid reagents for thromboelastometry. Blood Coagul Fibrinolysis. 2009;20(3):218–22. doi: 10.1097/MBC.0b013e328327355d.PubMedCrossRefGoogle Scholar
  14. 14.
    Ostrowski SR, Johansson PI. Endothelial glycocalyx degradation induces endogenous heparinization in patients with severe injury and early traumatic coagulopathy. J Trauma Acute Care Surg. 2012;73(1):60–6. doi: 10.1097/TA.0b013e31825b5c10.PubMedCrossRefGoogle Scholar
  15. 15.
    Lang T, Toller W, Gütl M, Mahla E, Metzler H, Rehak P, März W, Halwachs-Baumann G. Different effects of abciximab and cytochalasin D on clot strength in thrombelastography. J Thromb Haemost. 2004;2(1):147–53.PubMedCrossRefGoogle Scholar
  16. 16.
    Schlimp CJ, Solomon C, Ranucci M, Hochleitner G, Redl H, Schöchl H. The effectiveness of different functional fibrinogen polymerization assays in eliminating platelet contribution to clot strength in thromboelastometry. Anesth Analg. 2014;118(2):269–76. doi: 10.1213/ANE.0000000000000058.PubMedCrossRefGoogle Scholar
  17. 17.
    Olde Engberink RH, Kuiper GJ, Wetzels RJ, Nelemans PJ, Lance MD, Beckers EA, Henskens YM. Rapid and correct prediction of thrombocytopenia and hypofibrinogenemia with rotational thromboelastometry in cardiac surgery. J Cardiothorac Vasc Anesth. 2014;28(2):210–6. doi: 10.1053/j.jvca.2013.12.004.PubMedCrossRefGoogle Scholar
  18. 18.
    Gronchi F, Perret A, Ferrari E, Marcucci CM, Flèche J, Crosset M, Schoettker P, Marcucci C. Validation of rotational thromboelastometry during cardiopulmonary bypass: a prospective, observational in-vivo study. Eur J Anaesthesiol. 2014;31(2):68–75. doi: 10.1097/EJA.0b013e328363171a.PubMedCrossRefGoogle Scholar
  19. 19.
    Sucker C, Zotz RB, Görlinger K, Hartmann M. Rotational thrombelastometry for the bedside monitoring of recombinant hirudin. Acta Anaesthesiol Scand. 2008;52(3):358–62. doi: 10.1111/j.1399-6576.2007.01550.x.PubMedCrossRefGoogle Scholar
  20. 20.
    Schaden E, Schober A, Hacker S, Kozek-Langenecker S. Ecarin modified rotational thrombelastometry: a point-of-care applicable alternative to monitor the direct thrombin inhibitor argatroban. Wien Klin Wochenschr. 2013;125(5–6):156–9. doi: 10.1007/s00508-013-0327-1.PubMedCrossRefGoogle Scholar
  21. 21.
    Adamzik M, Eggmann M, Frey UH, Görlinger K, Bröcker-Preuss M, Marggraf G, Saner F, Eggebrecht H, Peters J, Hartmann M. Comparison of thromboelastometry with procalcitonin, interleukin 6, and C-reactive protein as diagnostic tests for severe sepsis in critically ill adults. Crit Care. 2010;14(5):R178. doi: 10.1186/cc9284.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Görlinger K, Bergmann L, Dirkmann D. Coagulation management in patients undergoing mechanical circulatory support. Best Pract Res Clin Anaesthesiol. 2012;26(2):179–98. doi: 10.1016/j.bpa.2012.04.003.PubMedCrossRefGoogle Scholar
  23. 23.
    Adamzik M, Schäfer S, Frey UH, Becker A, Kreuzer M, Winning S, Frede S, Steinmann J, Fandrey J, Zacharowski K, Siffert W, Peters J, Hartmann M. The NFKB1 promoter polymorphism (-94ins/delATTG) alters nuclear translocation of NF-κB1 in monocytes after lipopolysaccharide stimulation and is associated with increased mortality in sepsis. Anesthesiology. 2013;118(1):123–33. doi: 10.1097/ALN.0b013e318277a652.PubMedCrossRefGoogle Scholar
  24. 24.
    Müller MC, Meijers JC, Vroom MB, Juffermans NP. Utility of thromboelastography and/or thromboelastometry in adults with sepsis: a systematic review. Crit Care. 2014;18(1):R30. doi: 10.1186/cc13721.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Sørensen B, Johansen P, Christiansen K, Woelke M, Ingerslev J. Whole blood coagulation thrombelastographic profiles employing minimal tissue factor activation. J Thromb Haemost. 2003;1(3):551–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Lang T, von Depka M. Possibilities and limitations of thrombelastometry-graphy. Hamostaseologie. 2006;26(3 Suppl 1):S20–9.PubMedGoogle Scholar
  27. 27.
    Görlinger K, Jambor C, Hanke AA, Dirkmann D, Adamzik M, Hartmann M, Rahe-Meyer N. Perioperative coagulation management and control of platelet transfusion by point-of-care platelet function analysis. Transfus Med Hemother. 2007;34(6):396–411. doi: 10.1159/000109642.CrossRefGoogle Scholar
  28. 28.
    Tem Innnovations GmbH. ROTEM® delta Manual EN 2012.Google Scholar
  29. 29.
    Lang T, Bauters A, Braun SL, Pötzsch B, von Pape KW, Kolde HJ, Lakner M. Multi-centre investigation on reference ranges for ROTEM thromboelastometry. Blood Coagul Fibrinolysis. 2005;16(4):301–10.PubMedCrossRefGoogle Scholar
  30. 30.
    Haizinger B, Gombotz H, Rehak P, Geiselseder G, Mair R. Activated thrombelastogram in neonates and infants with complex congenital heart disease in comparison with healthy children. Br J Anaesth. 2006;97(4):545–52.PubMedCrossRefGoogle Scholar
  31. 31.
    Oswald E, Stalzer B, Heitz E, Weiss M, Schmugge M, Strasak A, Innerhofer P, Haas T. Thromboelastometry (ROTEM) in children: age-related reference ranges and correlations with standard coagulation tests. Br J Anaesth. 2010;105(6):827–35. doi: 10.1093/bja/aeq258.PubMedCrossRefGoogle Scholar
  32. 32.
    Huissoud C, Carrabin N, Benchaib M, Fontaine O, Levrat A, Massignon D, Touzet S, Rudigoz RC, Berland M. Coagulation assessment by rotation thrombelastometry in normal pregnancy. Thromb Haemost. 2009;101(4):755–61.PubMedGoogle Scholar
  33. 33.
    Oudghiri M, Keita H, Kouamou E, Boutonnet M, Orsini M, Desconclois C, Mandelbrot L, Daures JP, Stépanian A, Peynaud-Debayle E, de Prost D. Reference values for rotation thromboelastometry (ROTEM®) parameters following non-haemorrhagic deliveries. Correlations with standard haemostasis parameters. Thromb Haemost. 2011;106(1):176–8. doi: 10.1160/TH11-02-0058.PubMedCrossRefGoogle Scholar
  34. 34.
    de Lange NM, van Rheenen-Flach LE, Lancé MD, Mooyman L, Woiski M, van Pampus EC, Porath M, Bolte AC, Smits L, Henskens YM, Scheepers HC. Peri-partum reference ranges for ROTEM(R) thromboelastometry. Br J Anaesth. 2014;112(5):852–9. doi: 10.1093/bja/aet480.PubMedCrossRefGoogle Scholar
  35. 35.
    Dirkmann D, Görlinger K, Dusse F, Kottenberg E, Peters J. Early thromboelastometric variables reliably predict maximum clot firmness in patients undergoing cardiac surgery: a step towards earlier decision making. Acta Anaesthesiol Scand. 2013;57(5):594–603. doi: 10.1111/aas.12040.PubMedCrossRefGoogle Scholar
  36. 36.
    Görlinger K, Dirkmann D, Solomon C, Hanke AA. Fast interpretation of thromboelastometry in non-cardiac surgery: reliability in patients with hypo-, normo-, and hypercoagulability. Br J Anaesth. 2013;110(2):222–30. doi: 10.1093/bja/aes374.PubMedCrossRefGoogle Scholar
  37. 37.
    Song JG, Jeong SM, Jun IG, Lee HM, Hwang GS. Five-minute parameter of thromboelastometry is sufficient to detect thrombocytopenia and hypofibrinogenaemia in patients undergoing liver transplantation. Br J Anaesth. 2014;112(2):290–7. doi: 10.1093/bja/aet325.PubMedCrossRefGoogle Scholar
  38. 38.
    Rourke C, Curry N, Khan S, Taylor R, Raza I, Davenport R, Stanworth S, Brohi K. Fibrinogen levels during trauma hemorrhage, response to replacement therapy, and association with patient outcomes. J Thromb Haemost. 2012;10(7):1342–51. doi: 10.1111/j.1538-7836.2012.04752.x.PubMedCrossRefGoogle Scholar
  39. 39.
    Meyer AS, Meyer MA, Sørensen AM, Rasmussen LS, Hansen MB, Holcomb JB, Cotton BA, Wade CE, Ostrowski SR, Johansson PI. Thrombelastography and rotational thromboelastometry early amplitudes in 182 trauma patients with clinical suspicion of severe injury. J Trauma Acute Care Surg. 2014;76(3):682–90. doi: 10.1097/TA.0000000000000134.PubMedCrossRefGoogle Scholar
  40. 40.
    Dirkmann D, Görlinger K, Peters J. Assessment of early thromboelastometric variables from extrinsically activated assays with and without aprotinin for rapid detection of fibrinolysis. Anesth Analg. 2014;119(3):533–42. doi: 10.1213/ANE.0000000000000333.PubMedCrossRefGoogle Scholar
  41. 41.
    Davenport R, Manson J, De'Ath H, Platton S, Coates A, Allard S, Hart D, Pearse R, Pasi KJ, MacCallum P, Stanworth S, Brohi K. Functional definition and characterization of acute traumatic coagulopathy. Crit Care Med. 2011;39(12):2652–8. doi: 10.1097/CCM.0b013e3182281af5.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Dekker SE, Viersen VA, Duvekot A, de Jong M, van den Brom CE, van de Ven PM, Schober P, Boer C. Lysis onset time as diagnostic rotational thromboelastometry parameter for fast detection of hyperfibrinolysis. Anesthesiology. 2014;121(1):89–97. doi: 10.1097/ALN.0000000000000229.PubMedCrossRefGoogle Scholar
  43. 43.
    Kalantzi KI, Tsoumani ME, Goudevenos IA, Tselepis AD. Pharmacodynamic properties of antiplatelet agents: current knowledge and future perspectives. Expert Rev Clin Pharmacol. 2012;5(3):319–36. doi: 10.1586/ecp.12.19.PubMedCrossRefGoogle Scholar
  44. 44.
    Tóth O, Calatzis A, Penz S, Losonczy H, Siess W. Multiple electrode aggregometry: a new device to measure platelet aggregation in whole blood. Thromb Haemost. 2006;96(6):781–8.PubMedGoogle Scholar
  45. 45.
    Jámbor C, Weber CF, Gerhardt K, Dietrich W, Spannagl M, Heindl B, Zwissler B. Whole blood multiple electrode aggregometry is a reliable point-of-care test of aspirin-induced platelet dysfunction. Anesth Analg. 2009;109(1):25–31. doi: 10.1213/ane.0b013e3181a27d10.PubMedCrossRefGoogle Scholar
  46. 46.
    Penz SM, Bernlochner I, Tóth O, Lorenz R, Calatzis A, Siess W. Selective and rapid monitoring of dual platelet inhibition by aspirin and P2Y12 antagonists by using multiple electrode aggregometry. Thromb J. 2010;8:9. doi: 10.1186/1477-9560-8-9.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Krüger JC, Meves SH, Kara K, Mügge A, Neubauer H. Monitoring ASA and P2Y12-specific platelet inhibition—comparison of conventional (single) and multiple electrode aggregometry. Scand J Clin Lab Invest. 2014;74(7):568–74. doi: 10.3109/00365513.2014.913305.PubMedCrossRefGoogle Scholar
  48. 48.
    Sibbing D, Braun S, Morath T, Mehilli J, Vogt W, Schömig A, Kastrati A, von Beckerath N. Platelet reactivity after clopidogrel treatment assessed with point-of-care analysis and early drug-eluting stent thrombosis. J Am Coll Cardiol. 2009;53(10):849–56. doi: 10.1016/j.jacc.2008.11.030.PubMedCrossRefGoogle Scholar
  49. 49.
    Sibbing D, Schulz S, Braun S, Morath T, Stegherr J, Mehilli J, Schömig A, von Beckerath N, Kastrati A. Antiplatelet effects of clopidogrel and bleeding in patients undergoing coronary stent placement. J Thromb Haemost. 2010;8(2):250–6. doi: 10.1111/j.1538-7836.2009.03709.x.PubMedCrossRefGoogle Scholar
  50. 50.
    Siller-Matula JM, Christ G, Lang IM, Delle-Karth G, Huber K, Jilma B. Multiple electrode aggregometry predicts stent thrombosis better than the vasodilator-stimulated phosphoprotein phosphorylation assay. J Thromb Haemost. 2010;8(2):351–9. doi: 10.1111/j.1538-7836.2009.03699.x.PubMedCrossRefGoogle Scholar
  51. 51.
    Rahe-Meyer N, Winterhalter M, Boden A, Froemke C, Piepenbrock S, Calatzis A, Solomon C. Platelet concentrates transfusion in cardiac surgery and platelet function assessment by multiple electrode aggregometry. Acta Anaesthesiol Scand. 2009;53(2):168–75. doi: 10.1111/j.1399-6576.2008.01845.x.PubMedCrossRefGoogle Scholar
  52. 52.
    Ranucci M, Baryshnikova E, Soro G, Ballotta A, De Benedetti D, Conti D. Surgical and Clinical Outcome Research (SCORE) Group. Multiple electrode whole-blood aggregometry and bleeding in cardiac surgery patients receiving thienopyridines. Ann Thorac Surg. 2011;91(1):123–9. doi: 10.1016/j.athoracsur.2010.09.022.PubMedCrossRefGoogle Scholar
  53. 53.
    Petricević M, Biocina B, Konosić S, Burcar I, Sirić F, Mihaljević MZ, Ivancan V, Svetina L, Gasparović H. Definition of acetylsalicylic acid resistance using whole blood impedance aggregometry in patients undergoing coronary artery surgery. Coll Antropol. 2013;37(3):833–9.PubMedGoogle Scholar
  54. 54.
    Schimmer C, Hamouda K, Sommer SP, Özkur M, Hain J, Leyh R. The predictive value of multiple electrode platelet aggregometry (multiplate) in adult cardiac surgery. Thorac Cardiovasc Surg. 2013;61(8):733–43. doi: 10.1055/s-0033-1333659. Epub 2013 Feb 18.PubMedCrossRefGoogle Scholar
  55. 55.
    Ranucci M, Colella D, Baryshnikova E, Di Dedda U; for the Surgical and Clinical Outcome Research (SCORE) Group. Effect of preoperative P2Y12 and thrombin platelet receptor inhibition on bleeding after cardiac surgery. Br J Anaesth. 2014 Sep 10. pii:aeu315 [Epub ahead of print].Google Scholar
  56. 56.
    Solomon C, Traintinger S, Ziegler B, Hanke A, Rahe-Meyer N, Voelckel W, Schöchl H. Platelet function following trauma. A multiple electrode aggregometry study. Thromb Haemost. 2011;106(2):322–30. doi: 10.1160/TH11-03-0175.PubMedCrossRefGoogle Scholar
  57. 57.
    Adamzik M, Görlinger K, Peters J, Hartmann M. Whole blood impedance aggregometry as a biomarker for the diagnosis and prognosis of severe sepsis. Crit Care. 2012;16(5):R204. doi: 10.1186/cc11816.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Kutcher ME, Redick BJ, McCreery RC, Crane IM, Greenberg MD, Cachola LM, Nelson MF, Cohen MJ. Characterization of platelet dysfunction after trauma. J Trauma Acute Care Surg. 2012;73(1):13–9. doi: 10.1097/TA.0b013e318256deab.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Hanke AA, Dellweg C, Kienbaum P, Weber CF, Görlinger K, Rahe-Meyer N. Effects of desmopressin on platelet function under conditions of hypothermia and acidosis: an in vitro study using multiple electrode aggregometry. Anaesthesia. 2010;65(7):688–91. doi: 10.1111/j.1365-2044.2010.06367.x.PubMedCrossRefGoogle Scholar
  60. 60.
    Weber CF, Dietrich W, Spannagl M, Hofstetter C, Jámbor C. A point-of-care assessment of the effects of desmopressin on impaired platelet function using multiple electrode whole-blood aggregometry in patients after cardiac surgery. Anesth Analg. 2010;110(3):702–7. doi: 10.1213/ANE.0b013e3181c92a5c.PubMedCrossRefGoogle Scholar
  61. 61.
    Weber CF, Görlinger K, Byhahn C, Moritz A, Hanke AA, Zacharowski K, Meininger D. Tranexamic acid partially improves platelet function in patients treated with dual antiplatelet therapy. Eur J Anaesthesiol. 2011;28(1):57–62. doi: 10.1097/EJA.0b013e32834050ab.PubMedCrossRefGoogle Scholar
  62. 62.
    Grewal PK, Uchiyama S, Ditto D, Varki N, Le DT, Nizet V, Marth JD. The Ashwell receptor mitigates the lethal coagulopathy of sepsis. Nat Med. 2008;14(6):648–55. doi: 10.1038/nm1760.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Harr JN, Moore EE, Wohlauer MV, Fragoso M, Gamboni F, Liang X, Banerjee A, Silliman CC. Activated platelets in heparinized shed blood: the “second hit” of acute lung injury in trauma/hemorrhagic shock models. Shock. 2011;36(6):595–603. doi: 10.1097/SHK.0b013e318231ee76.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Harr JN, Moore EE, Johnson J, Chin TL, Wohlauer MV, Maier R, Cuschieri J, Sperry J, Banerjee A, Silliman CC, Sauaia A. Antiplatelet therapy is associated with decreased transfusion-associated risk of lung dysfunction, multiple organ failure, and mortality in trauma patients. Crit Care Med. 2013;41(2):399–404. doi: 10.1097/CCM.0b013e31826ab38b.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Batchelor JS, Grayson A. A meta-analysis to determine the effect of preinjury antiplatelet agents on mortality in patients with blunt head trauma. Br J Neurosurg. 2013;27(1):12–8. doi: 10.3109/02688697.2012.705361.PubMedCrossRefGoogle Scholar
  66. 66.
    Hallet J, Lauzier F, Mailloux O, Trottier V, Archambault P, Zarychanski R, Turgeon AF. The use of higher platelet: RBC transfusion ratio in the acute phase of trauma resuscitation: a systematic review. Crit Care Med. 2013;41(12):2800–11. doi: 10.1097/CCM.0b013e31829a6ecb.PubMedCrossRefGoogle Scholar
  67. 67.
    Briggs A, Gates JD, Kaufman RM, Calahan C, Gormley WB, Havens JM. Platelet dysfunction and platelet transfusion in traumatic brain injury. J Surg Res. 2014 Aug 13. pii:S0022-4804(14)00783-5. doi: 10.1016/j.jss.2014.08.016 [Epub ahead of print].
  68. 68.
    Inaba K, Branco BC, Rhee P, Blackbourne LH, Holcomb JB, Teixeira PG, Shulman I, Nelson J, Demetriades D. Impact of plasma transfusion in trauma patients who do not require massive transfusion. J Am Coll Surg. 2010;210(6):957–65. doi: 10.1016/j.jamcollsurg.2010.01.031.PubMedCrossRefGoogle Scholar
  69. 69.
    Borgman MA, Spinella PC, Holcomb JB, Blackbourne LH, Wade CE, Lefering R, Bouillon B, Maegele M. The effect of FFP:RBC ratio on morbidity and mortality in trauma patients based on transfusion prediction score. Vox Sang. 2011;101(1):44–54. doi: 10.1111/j.1423-0410.2011.01466.x.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Mitra B, Cameron PA, Gruen RL. Aggressive fresh frozen plasma (FFP) with massive blood transfusion in the absence of acute traumatic coagulopathy. Injury. 2012;43(1):33–7. doi: 10.1016/j.injury.2011.10.011.PubMedCrossRefGoogle Scholar
  71. 71.
    Holcomb JB, Gumbert S. Potential value of protocols in substantially bleeding trauma patients. Curr Opin Anaesthesiol. 2013;26(2):215–20. doi: 10.1097/ACO.0b013e32835e8c9b.PubMedCrossRefGoogle Scholar
  72. 72.
    Theusinger OM, Stein P, Spahn DR. Transfusion strategy in multiple trauma patients. Curr Opin Crit Care. 2014 Oct 13 [Epub ahead of print].Google Scholar
  73. 73.
    Brockamp T, Nienaber U, Mutschler M, Wafaisade A, Peiniger S, Lefering R, Bouillon B, Maegele M, TraumaRegister DGU. Predicting on-going hemorrhage and transfusion requirement after severe trauma: a validation of six scoring systems and algorithms on the TraumaRegister DGU. Crit Care. 2012;16(4):R129. doi: 10.1186/cc11432.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Maegele M, Brockamp T, Nienaber U, Probst C, Schoechl H, Görlinger K, Spinella P. Predictive models and algorithms for the need of transfusion including massive transfusion in severely injured patients. Transfus Med Hemother. 2012;39(2):85–97.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Mutschler M, Brockamp T, Wafaisade A, Lipensky A, Probst C, Bouillon B, Maegele M. ‘Time to TASH’: how long does complete score calculation take to assess major trauma hemorrhage? Transfus Med. 2014;24(1):58–9. doi: 10.1111/tme.12089.PubMedCrossRefGoogle Scholar
  76. 76.
    Leemann H, Lustenberger T, Talving P, Kobayashi L, Bukur M, Brenni M, Brüesch M, Spahn DR, Keel MJ. The role of rotation thromboelastometry in early prediction of massive transfusion. J Trauma. 2010;69(6):1403–8. doi: 10.1097/TA.0b013e3181faaa25. discussion 1408–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Schöchl H, Cotton B, Inaba K, Nienaber U, Fischer H, Voelckel W, Solomon C. FIBTEM provides early prediction of massive transfusion in trauma. Crit Care. 2011;15(6):R265. doi: 10.1186/cc10539.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Tauber H, Innerhofer P, Breitkopf R, Westermann I, Beer R, El Attal R, Strasak A, Mittermayr M. Prevalence and impact of abnormal ROTEM(R) assays in severe blunt trauma: results of the ‘Diagnosis and Treatment of Trauma-Induced Coagulopathy (DIA-TRE-TIC) study’. Br J Anaesth. 2011;107(3):378–87. doi: 10.1093/bja/aer158.PubMedCrossRefGoogle Scholar
  79. 79.
    Shakur H, Roberts I, Bautista R, Caballero J, Coats T, Dewan Y, El-Sayed H, Gogichaishvili T, Gupta S, Herrera J, Hunt B, Iribhogbe P, Izurieta M, Khamis H, Komolafe E, Marrero MA, Mejía-Mantilla J, Miranda J, Morales C, Olaomi O, Olldashi F, Perel P, Peto R, Ramana PV, Ravi RR, Yutthakasemsunt S, CRASH-2 trial collaborators. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376(9734):23–32. doi: 10.1016/S0140-6736(10)60835-5.PubMedCrossRefGoogle Scholar
  80. 80.
    Roberts I, Shakur H, Afolabi A, Brohi K, Coats T, Dewan Y, Gando S, Guyatt G, Hunt BJ, Morales C, Perel P, Prieto-Merino D, Woolley T, CRASH-2 collaborators. The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomised controlled trial. Lancet. 2011;377(9771):1096–101. doi: 10.1016/S0140-6736(11)60278-X. 1101.e1–2.PubMedCrossRefGoogle Scholar
  81. 81.
    Dimitrova-Karamfilova A, Patokova Y, Solarova T, Petrova I, Natchev G. Rotation thromboelastography for assessment of hypercoagulation and thrombosis in patients with cardiovascular diseases. J Life Sci. 2012;6:28–35.Google Scholar
  82. 82.
    Hincker A, Feit J, Sladen RN, Wagener G. Rotational thromboelastometry predicts thromboembolic complications after major non-cardiac surgery. Crit Care. 2014;18(5):549 [Epub ahead of print].PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Snyder TA, Litwak KN, Tsukui H, Akimoto T, Kihara S, Yamazaki K, Wagner WR. Leukocyte-platelet aggregates and monocyte tissue factor expression in bovines implanted with ventricular assist devices. Artif Organs. 2007;31(2):126–31.PubMedCrossRefGoogle Scholar
  84. 84.
    Hartmann M, Ozlügedik S, Peters J. Thiopental inhibits lipopolysaccharide-induced tissue factor expression. Anesth Analg. 2009;109(1):109–13. doi: 10.1213/ane.0b013e3181a27cfb.PubMedCrossRefGoogle Scholar
  85. 85.
    Schulte am Esch 2nd J, Akyildiz A, Tustas RY, Ganschow R, Schmelzle M, Krieg A, Robson SC, Topp SA, Rogiers X, Knoefel WT, Fischer L. ADP-dependent platelet function prior to and in the early course of pediatric liver transplantation and persisting thrombocytopenia are positively correlated with ischemia/reperfusion injury. Transpl Int. 2010;23(7):745–52. doi: 10.1111/j.1432-2277.2010.01054.x.PubMedCrossRefGoogle Scholar
  86. 86.
    Di Santo A, Amore C, Dell'Elba G, Manarini S, Evangelista V. Glycogen synthase kinase-3 negatively regulates tissue factor expression in monocytes interacting with activated platelets. J Thromb Haemost. 2011;9(5):1029–39. doi: 10.1111/j.1538-7836.2011.04236.x.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Rao LV, Pendurthi UR. Regulation of tissue factor coagulant activity on cell surfaces. J Thromb Haemost. 2012;10(11):2242–53. doi: 10.1111/jth.12003.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Chen VM, Hogg PJ. Encryption and decryption of tissue factor. J Thromb Haemost. 2013;11 Suppl 1:277–84. doi: 10.1111/jth.12228.PubMedCrossRefGoogle Scholar
  89. 89.
    Sucker C, Paniczek S, Scharf RE, Litmathe J, Hartmann M. Rotation thromboelastography for the detection and characterization of lipoteichoid acid-induced activation of haemostasis in an in vitro sepsis model. Perfusion. 2013;28(2):146–51. doi: 10.1177/0267659112464712.PubMedCrossRefGoogle Scholar
  90. 90.
    Schöchl H, Solomon C, Schulz A, Voelckel W, Hanke A, Van Griensven M, Redl H, Bahrami S. Thromboelastometry (TEM) findings in disseminated intravascular coagulation in a pig model of endotoxinemia. Mol Med. 2011;17(3–4):266–72. doi: 10.2119/molmed.2010.00159.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Semeraro F, Ammollo CT, Semeraro N, Colucci M. Tissue factor-expressing monocytes inhibit fibrinolysis through a TAFI-mediated mechanism, and make clots resistant to heparins. Haematologica. 2009;94(6):819–26. doi: 10.3324/haematol.2008.000042.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Meltzer ME, Lisman T, de Groot PG, Meijers JC, le Cessie S, Doggen CJ, Rosendaal FR. Venous thrombosis risk associated with plasma hypofibrinolysis is explained by elevated plasma levels of TAFI and PAI-1. Blood. 2010;116(1):113–21. doi: 10.1182/blood-2010-02-267740.PubMedCrossRefGoogle Scholar
  93. 93.
    Levi M. Coagulation in sepsis. Int J Intensive Care. 2013;20(3):77–81.Google Scholar
  94. 94.
    Mosnier LO. Platelet factor 4 inhibits thrombomodulin-dependent activation of thrombin-activatable fibrinolysis inhibitor (TAFI) by thrombin. J Biol Chem. 2011;286(1):502–10. doi: 10.1074/jbc.M110.147959.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Ozolina A, Strike E, Jaunalksne I, Serova J, Romanova T, Zake LN, Sabelnikovs O, Vanags I. Influence of PAI-1 gene promoter-675 (4G/5G) polymorphism on fibrinolytic activity after cardiac surgery employing cardiopulmonary bypass. Medicina (Kaunas). 2012;48(10):515–20.Google Scholar
  96. 96.
    Koyama K, Madoiwa S, Nunomiya S, Koinuma T, Wada M, Sakata A, Ohmori T, Mimuro J, Sakata Y. Combination of thrombin-antithrombin complex, plasminogen activator inhibitor-1, and protein C activity for early identification of severe coagulopathy in initial phase of sepsis: a prospective observational study. Crit Care. 2014;18(1):R13. doi: 10.1186/cc13190.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Chapman MP, Moore EE, Ramos CR, Ghasabyan A, Harr JN, Chin TL, Stringham JR, Sauaia A, Silliman CC, Banerjee A. Fibrinolysis greater than 3% is the critical value for initiation of antifibrinolytic therapy. J Trauma Acute Care Surg. 2013;75(6):961–7. doi: 10.1097/TA.0b013e3182aa9c9f. discussion 967.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Adamzik M, Langemeier T, Frey UH, Görlinger K, Saner F, Eggebrecht H, Peters J, Hartmann M. Comparison of thrombelastometry with simplified acute physiology score II and sequential organ failure assessment scores for the prediction of 30-day survival: a cohort study. Shock. 2011;35(4):339–42. doi: 10.1097/SHK.0b013e318204bff6.PubMedCrossRefGoogle Scholar
  99. 99.
    Da Luz LT, Nascimento B, Shankarakutty AK, Rizoli S, Adhikari NK. Effect of thromboelastography (TEG®) and rotational thromboelastometry (ROTEM®) on diagnosis of coagulopathy, transfusion guidance and mortality in trauma: descriptive systematic review. Crit Care. 2014;18(5):518. doi: 10.1186/s13054-014-0518-9.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Levrat A, Gros A, Rugeri L, Inaba K, Floccard B, Negrier C, David JS. Evaluation of rotation thrombelastography for the diagnosis of hyperfibrinolysis in trauma patients. Br J Anaesth. 2008;100(6):792–7. doi: 10.1093/bja/aen083.PubMedCrossRefGoogle Scholar
  101. 101.
    Schöchl H, Frietsch T, Pavelka M, Jámbor C. Hyperfibrinolysis after major trauma: differential diagnosis of lysis patterns and prognostic value of thrombelastometry. J Trauma. 2009;67(1):125–31. doi: 10.1097/TA.0b013e31818b2483.PubMedCrossRefGoogle Scholar
  102. 102.
    Theusinger OM, Wanner GA, Emmert MY, Billeter A, Eismon J, Seifert B, Simmen HP, Spahn DR, Baulig W. Hyperfibrinolysis diagnosed by rotational thromboelastometry (ROTEM) is associated with higher mortality in patients with severe trauma. Anesth Analg. 2011;113(5):1003–12. doi: 10.1213/ANE.0b013e31822e183f.PubMedCrossRefGoogle Scholar
  103. 103.
    Khan S, Brohi K, Chana M, Raza I, Stanworth S, Gaarder C, Davenport R. International Trauma Research Network (INTRN). Hemostatic resuscitation is neither hemostatic nor resuscitative in trauma hemorrhage. J Trauma Acute Care Surg. 2014;76(3):561–7. doi: 10.1097/TA.0000000000000146. discussion 567–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Stensballe J, Ostrowski SR, Johansson PI. Viscoelastic guidance of resuscitation. Curr Opin Anaesthesiol. 2014;27(2):212–8. doi: 10.1097/ACO.0000000000000051.PubMedCrossRefGoogle Scholar
  105. 105.
    Goerlinger K, Kiss G, Dirkmann D, Dusse F, Hanke A, Arvieux CC, Peters J. ROTEM-based algorithm for management of acute haemorrhage and coagulation disorders in trauma patients. Eur J Anaesthesiol. 2006;23 Suppl 37:S84–5.CrossRefGoogle Scholar
  106. 106.
    Waydhas C, Görlinger K. Coagulation management in multiple trauma. Unfallchirurg. 2009;112(11):942–50. doi: 10.1007/s00113-009-1681-3.PubMedCrossRefGoogle Scholar
  107. 107.
    Görlinger K, Dirkmann D, Weber CF, Rahe-Meyer N, Hanke AA. Algorithms for transfusion and coagulation management in massive haemorrhage. Anästh Intensivmed. 2011;52(2):145–59.Google Scholar
  108. 108.
    Schöchl H, Maegele M, Solomon C, Görlinger K, Voelckel W. Early and individualized goal-directed therapy for trauma-induced coagulopathy. Scand J Trauma Resusc Emerg Med. 2012;20:15. doi: 10.1186/1757-7241-20-15.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Kozek-Langenecker SA. Coagulation and transfusion in the postoperative bleeding patient. Curr Opin Crit Care. 2014;20(4):460–6. doi: 10.1097/MCC.0000000000000109.PubMedCrossRefGoogle Scholar
  110. 110.
    Görlinger K, Dirkmann D, Hanke AA, Kamler M, Kottenberg E, Thielmann M, Jakob H, Peters J. First-line therapy with coagulation factor concentrates combined with point-of-care coagulation testing is associated with decreased allogeneic blood transfusion in cardiovascular surgery: a retrospective, single-center cohort study. Anesthesiology. 2011;115(6):1179–91. doi: 10.1097/ALN.0b013e31823497dd.PubMedGoogle Scholar
  111. 111.
    Weber CF, Görlinger K, Meininger D, Herrmann E, Bingold T, Moritz A, Cohn LH, Zacharowski K. Point-of-care testing: a prospective, randomized clinical trial of efficacy in coagulopathic cardiac surgery patients. Anesthesiology. 2012;117(3):531–47.PubMedCrossRefGoogle Scholar
  112. 112.
    Görlinger K, Dirkmann D, Hanke AA. Potential value of transfusion protocols in cardiac surgery. Curr Opin Anaesthesiol. 2013;26(2):230–43. doi: 10.1097/ACO.0b013e32835ddca6.PubMedCrossRefGoogle Scholar
  113. 113.
    Schöchl H, Nienaber U, Hofer G, Voelckel W, Jambor C, Scharbert G, Kozek-Langenecker S, Solomon C. Goal-directed coagulation management of major trauma patients using thromboelastometry (ROTEM)-guided administration of fibrinogen concentrate and prothrombin complex concentrate. Crit Care. 2010;14(2):R55. doi: 10.1186/cc8948.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Schöchl H, Nienaber U, Maegele M, Hochleitner G, Primavesi F, Steitz B, Arndt C, Hanke A, Voelckel W, Solomon C. Transfusion in trauma: thromboelastometry-guided coagulation factor concentrate-based therapy versus standard fresh frozen plasma-based therapy. Crit Care. 2011;15(2):R83. doi: 10.1186/cc10078.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Görlinger K, Fries D, Dirkmann D, Weber CF, Hanke AA, Schöchl H. Reduction of fresh frozen plasma requirements by perioperative point-of-care coagulation management with early calculated goal-directed therapy. Transfus Med Hemother. 2012;39(2):104–13.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Schöchl H, Schlimp CJ, Voelckel W. Potential value of pharmacological protocols in trauma. Curr Opin Anaesthesiol. 2013;26(2):221–9. doi: 10.1097/ACO.0b013e32835cca92.PubMedCrossRefGoogle Scholar
  117. 117.
    Lendemans S, Düsing H, Assmuth S, Hußmann B, Wafaisade A, Lefering R, Görlinger K, Marzi I. Die Einführung eines spezifischen Gerinnungsprotokolls (Point of Care) verbessert das Outcome beim blutenden Schwerverletzten: eine Subgruppenanalyse von 172 Patienten unter Beteiligung des Traumaregisters DGU (gefördert durch die DIVI). Deutscher Kongress für Orthopädie und Unfallchirurgie (DKOU 2013). Berlin, 22–25.10.2013. Düsseldorf: German Medical Science GMS Publishing House; published 23 Oct 2013. DocWI50-561. doi: 10.3205/13dkou367.
  118. 118.
    Haas T, Görlinger K, Grassetto A, Agostini V, Simioni P, Nardi G, Ranucci M. Thromboelastometry for guiding bleeding management of the critically ill patient: a systematic review of the literature. Minerva Anestesiol. 2014 Feb 11 [Epub ahead of print].Google Scholar
  119. 119.
    Lier H, Vorweg M, Hanke A, Görlinger K. Thromboelastometry guided therapy of severe bleeding. Essener Runde algorithm. Hämostaseologie. 2013;33(1):51–61. doi: 10.5482/HAMO-12-05-0011.PubMedCrossRefGoogle Scholar
  120. 120.
    Kutcher ME, Cripps MW, McCreery RC, Crane IM, Greenberg MD, Cachola LM, Redick BJ, Nelson MF, Cohen MJ. Criteria for empiric treatment of hyperfibrinolysis after trauma. J Trauma Acute Care Surg. 2012;73(1):87–93. doi: 10.1097/TA.0b013e3182598c70.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Schlimp CJ, Voelckel W, Inaba K, Maegele M, Ponschab M, Schöchl H. Estimation of plasma fibrinogen levels based on hemoglobin, base excess and Injury Severity Score upon emergency room admission. Crit Care. 2013;17(4):R137. doi: 10.1186/cc12816.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Moore HB, Moore EE, Gonzalez E, Chapman MP, Chin TL, Silliman CC, Banerjee A, Sauaia A. Hyperfibrinolysis, physiologic fibrinolysis, and fibrinolysis shutdown: the spectrum of postinjury fibrinolysis and relevance to antifibrinolytic therapy. J Trauma Acute Care Surg. 2014 Jul 21 [Epub ahead of print].Google Scholar
  123. 123.
    Mittermayr M, Streif W, Haas T, Fries D, Velik-Salchner C, Klingler A, Innerhofer P. Effects of colloid and crystalloid solutions on endogenous activation of fibrinolysis and resistance of polymerized fibrin to recombinant tissue plasminogen activator added ex vivo. Br J Anaesth. 2008;100(3):307–14.PubMedCrossRefGoogle Scholar
  124. 124.
    Dirkmann D, Görlinger K, Gisbertz C, Dusse F, Peters J. Factor XIII and tranexamic acid but not recombinant factor VIIa attenuate tissue plasminogen activator-induced hyperfibrinolysis in human whole blood. Anesth Analg. 2012;114(6):1182–8. doi: 10.1213/ANE.0b013e31823b6683.PubMedCrossRefGoogle Scholar
  125. 125.
    Velik-Salchner C, Haas T, Innerhofer P, Streif W, Nussbaumer W, Klingler A, Klima G, Martinowitz U, Fries D. The effect of fibrinogen concentrate on thrombocytopenia. J Thromb Haemost. 2007;5(5):1019–25.PubMedCrossRefGoogle Scholar
  126. 126.
    Schöchl H, Solomon C, Traintinger S, Nienaber U, Tacacs-Tolnai A, Windhofer C, Bahrami S, Voelckel W. Thromboelastometric (ROTEM) findings in patients suffering from isolated severe traumatic brain injury. J Neurotrauma. 2011;28(10):2033–41. doi: 10.1089/neu.2010.1744.PubMedCrossRefGoogle Scholar
  127. 127.
    Rahe-Meyer N, Solomon C, Winterhalter M, Piepenbrock S, Tanaka K, Haverich A, Pichlmaier M. Thromboelastometry-guided administration of fibrinogen concentrate for the treatment of excessive intraoperative bleeding in thoracoabdominal aortic aneurysm surgery. J Thorac Cardiovasc Surg. 2009;138(3):694–702. doi: 10.1016/j.jtcvs.2008.11.065.PubMedCrossRefGoogle Scholar
  128. 128.
    Rahe-Meyer N, Solomon C, Hanke A, Schmidt DS, Knoerzer D, Hochleitner G, Sørensen B, Hagl C, Pichlmaier M. Effects of fibrinogen concentrate as first-line therapy during major aortic replacement surgery: a randomized, placebo-controlled trial. Anesthesiology. 2013;118(1):40–50. doi: 10.1097/ALN.0b013e3182715d4d.PubMedCrossRefGoogle Scholar
  129. 129.
    Tanaka KA, Bader SO, Görlinger K. Novel approaches in management of perioperative coagulopathy. Curr Opin Anaesthesiol. 2014;27(1):72–80. doi: 10.1097/ACO.0000000000000025.PubMedCrossRefGoogle Scholar
  130. 130.
    Greene LA, Chen S, Seery C, Imahiyerobo AM, Bussel JB. Beyond the platelet count: immature platelet fraction and thromboelastometry correlate with bleeding in patients with immune thrombocytopenia. Br J Haematol. 2014;166(4):592–600. doi: 10.1111/bjh.12929.PubMedCrossRefGoogle Scholar
  131. 131.
    Flisberg P, Rundgren M, Engström M. The effects of platelet transfusions evaluated using rotational thromboelastometry. Anesth Analg. 2009;108(5):1430–2. doi: 10.1213/ane.0b013e31819bccb7.PubMedCrossRefGoogle Scholar
  132. 132.
    Tripodi A, Primignani M, Chantarangkul V, Lemma L, Jovani M, Rebulla P, Mannucci PM. Global hemostasis tests in patients with cirrhosis before and after prophylactic platelet transfusion. Liver Int. 2013;33(3):362–7. doi: 10.1111/liv.12038.PubMedCrossRefGoogle Scholar
  133. 133.
    Konkle BA. Acquired disorders of platelet function. Hematology Am Soc Hematol Educ Program. 2011;2011:391–6. doi: 10.1182/asheducation-2011.1.391.PubMedCrossRefGoogle Scholar
  134. 134.
    Scharf RE. Drugs that affect platelet function. Semin Thromb Hemost. 2012;38(8):865–83. doi: 10.1055/s-0032-1328881. Epub 2012 Oct 30.PubMedCrossRefGoogle Scholar
  135. 135.
    Koch CD, Wockenfus AM, Miller RS, Tolan NV, Chen D, Pruthi RK, Jaffe AS, Karon BS. Intra-assay precision, inter-assay precision, and reliability of five platelet function methods used to monitor the effect of aspirin and clopidogrel on platelet function. Clin Chem. 2013;59(10 Suppl):A152.Google Scholar
  136. 136.
    Inaba K, Branco BC, Rhee P, Holcomb JB, Blackbourne LH, Shulman I, Nelson J, Demetriades D. Impact of ABO-identical vs ABO-compatible nonidentical plasma transfusion in trauma patients. Arch Surg. 2010;145(9):899–906. doi: 10.1001/archsurg.2010.175.PubMedCrossRefGoogle Scholar
  137. 137.
    Hickey M, Gatien M, Taljaard M, Aujnarain A, Giulivi A, Perry JJ. Outcomes of urgent warfarin reversal with frozen plasma versus prothrombin complex concentrate in the emergency department. Circulation. 2013;128(4):360–4. doi: 10.1161/CIRCULATIONAHA.113.001875.PubMedCrossRefGoogle Scholar
  138. 138.
    Sarode R, Milling Jr TJ, Refaai MA, Mangione A, Schneider A, Durn BL, Goldstein JN. Efficacy and safety of a 4-factor prothrombin complex concentrate in patients on vitamin K antagonists presenting with major bleeding: a randomized, plasma-controlled, phase IIIb study. Circulation. 2013;128(11):1234–43. doi: 10.1161/CIRCULATIONAHA.113.002283.PubMedGoogle Scholar
  139. 139.
    Innerhofer P, Westermann I, Tauber H, Breitkopf R, Fries D, Kastenberger T, El Attal R, Strasak A, Mittermayr M. The exclusive use of coagulation factor concentrates enables reversal of coagulopathy and decreases transfusion rates in patients with major blunt trauma. Injury. 2013;44(2):209–16. doi: 10.1016/j.injury.2012.08.047.PubMedCrossRefGoogle Scholar
  140. 140.
    Hanke AA, Joch C, Görlinger K. Long-term safety and efficacy of a pasteurized nanofiltrated prothrombin complex concentrate (Beriplex P/N): a pharmacovigilance study. Br J Anaesth. 2013;110(5):764–72. doi: 10.1093/bja/aes501.PubMedCrossRefGoogle Scholar
  141. 141.
    Tazarourte K, Riou B, Tremey B, Samama CM, Vicaut E, Vigué B, EPAHK Study Group. Guideline-concordant administration of prothrombin complex concentrate and vitamin K is associated with decreased mortality in patients with severe bleeding under vitamin K antagonist treatment (EPAHK study). Crit Care. 2014;18(2):R81. doi: 10.1186/cc13843.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Grottke O, van Ryn J, Spronk HM, Rossaint R. Prothrombin complex concentrates and a specific antidote to dabigatran are effective ex-vivo in reversing the effects of dabigatran in an anticoagulation/liver trauma experimental model. Crit Care. 2014;18(1):R27. doi: 10.1186/cc13717.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Eller T, Busse J, Dittrich M, Flieder T, Alban S, Knabbe C, Birschmann I. Dabigatran, rivaroxaban, apixaban, argatroban and fondaparinux and their effects on coagulation POC and platelet function tests. Clin Chem Lab Med. 2014;52(6):835–44. doi: 10.1515/cclm-2013-0936.PubMedCrossRefGoogle Scholar
  144. 144.
    Levi M, Levy JH, Andersen HF, Truloff D. Safety of recombinant activated factor VII in randomized clinical trials. N Engl J Med. 2010;363(19):1791–800. doi: 10.1056/NEJMoa1006221.PubMedCrossRefGoogle Scholar
  145. 145.
    Simpson E, Lin Y, Stanworth S, Birchall J, Doree C, Hyde C. Recombinant factor VIIa for the prevention and treatment of bleeding in patients without haemophilia. Cochrane Database Syst Rev. 2012;3:CD005011. doi: 10.1002/14651858.CD005011.pub4.PubMedGoogle Scholar
  146. 146.
    Lau P, Ong V, Tan WT, Koh PL, Hartman M. Use of activated recombinant factor VII in severe bleeding—evidence for efficacy and safety in trauma, postpartum hemorrhage, cardiac surgery, and gastrointestinal bleeding. Transfus Med Hemother. 2012;39(2):139–50.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Smith I, Rapchuk I, Macdonald C, Thomson B, Pearse B. Management of exsanguination during laser lead extraction. J Cardiothorac Vasc Anesth. 2013 Oct 1. pii:S1053-0770(13)00279-6. doi: 10.1053/j.jvca.2013.05.004 [Epub ahead of print].
  148. 148.
    Mittermayr M, Velik-Salchner C, Stalzer B, Margreiter J, Klingler A, Streif W, Fries D, Innerhofer P. Detection of protamine and heparin after termination of cardiopulmonary bypass by thrombelastometry (ROTEM): results of a pilot study. Anesth Analg. 2009;108(3):743–50. doi: 10.1213/ane.0b013e31818657a3.PubMedCrossRefGoogle Scholar
  149. 149.
    Afshari A, Wikkelsø A, Brok J, Møller AM, Wetterslev J. Thrombelastography (TEG) or thromboelastometry (ROTEM) to monitor haemotherapy versus usual care in patients with massive transfusion. Cochrane Database Syst Rev. 2011;3:CD007871. doi: 10.1002/14651858.CD007871.pub2.PubMedGoogle Scholar
  150. 150.
    Nienaber U, Innerhofer P, Westermann I, Schöchl H, Attal R, Breitkopf R, Maegele M. The impact of fresh frozen plasma vs coagulation factor concentrates on morbidity and mortality in trauma-associated haemorrhage and massive transfusion. Injury. 2011;42(7):697–701. doi: 10.1016/j.injury.2010.12.015.PubMedCrossRefGoogle Scholar
  151. 151.
    Sibbing D, Steinhubl SR, Schulz S, Schömig A, Kastrati A. Platelet aggregation and its association with stent thrombosis and bleeding in clopidogrel-treated patients: initial evidence of a therapeutic window. J Am Coll Cardiol. 2010;56(4):317–8. doi: 10.1016/j.jacc.2010.03.048.PubMedCrossRefGoogle Scholar
  152. 152.
    Tantry US, Bonello L, Aradi D, Price MJ, Jeong YH, Angiolillo DJ, Stone GW, Curzen N, Geisler T, Ten Berg J, Kirtane A, Siller-Matula J, Mahla E, Becker RC, Bhatt DL, Waksman R, Rao SV, Alexopoulos D, Marcucci R, Reny JL, Trenk D, Sibbing D, Gurbel PA, Working Group on On-Treatment Platelet Reactivity. Consensus and update on the definition of on-treatment platelet reactivity to adenosine diphosphate associated with ischemia and bleeding. J Am Coll Cardiol. 2013;62(24):2261–73. doi: 10.1016/j.jacc.2013.07.101.PubMedCrossRefGoogle Scholar
  153. 153.
    Spahn DR, Goodnough LT. Alternatives to blood transfusion. Lancet. 2013;381(9880):1855–65. doi: 10.1016/S0140-6736(13)60808-9.PubMedCrossRefGoogle Scholar
  154. 154.
    Kozek-Langenecker SA, Afshari A, Albaladejo P, Santullano CA, De Robertis E, Filipescu DC, Fries D, Görlinger K, Haas T, Imberger G, Jacob M, Lancé M, Llau J, Mallett S, Meier J, Rahe-Meyer N, Samama CM, Smith A, Solomon C, Van der Linden P, Wikkelsø AJ, Wouters P, Wyffels P. Management of severe perioperative bleeding: guidelines from the European Society of Anaesthesiology. Eur J Anaesthesiol. 2013;30(6):270–382. doi: 10.1097/EJA.0b013e32835f4d5b.PubMedCrossRefGoogle Scholar
  155. 155.
    Spahn DR, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernández-Mondéjar E, Filipescu D, Hunt BJ, Komadina R, Nardi G, Neugebauer E, Ozier Y, Riddez L, Schultz A, Vincent JL, Rossaint R. Management of bleeding and coagulopathy following major trauma: an updated European guideline. Crit Care. 2013;17(2):R76. doi: 10.1186/cc12685.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Craig J, Aguiar-Ibanez R, Bhattacharya S, Downie S, Duffy S, Kohli H, Nimmo A, Trueman P, Wilson S, Yunni Y. HTA Programme: Health Technology Assessment Report 11: the clinical and cost effectiveness of thromboelastography/thromboelastometry. NHS Quality Improvement Scotland, June 2008; ISBN: 1-84404-995-0;;
  157. 157.
    HealthPACT Seretariat. Health Policy Advisory Committee on Technology. Technology Brief: Rotational thromboelastometry (ROTEM®)—targeted therapy for coagulation management in patients with massive bleeding. State of Queensland (Queensland Health), Australia, November 2012;
  158. 158.
    Newland A, Kroese M, Akehurst R, Collinson P, Crawford S, Cree IA, Denton E, Edwards S, Evans D, Fleming S, Hyde C, Kalsheker N, Lowry M, Messenger M, Naylor P, Neely D, Nicholas R, Norbury G, Ossa D, Sculpher M, Thomas S, Weiberger P, Wiltsher C, Argarwal S, Davidson S, Green L, Haynes S, O’Keefe N. NICE diagnostics guidance 13: detecting, managing and monitoring haemostasis: viscoelastometric point-of-care testing (ROTEM, TEG and Sonoclot systems). National Institute for Health and Care Excellence (NICE); August 2014; ISBN: 978-1-4731-0688-8;;
  159. 159.
    Görlinger K, Kozek-Langenecker SA. Economic aspects and organization. In: Marcucci CE, Schoettker P, editors. Perioperative hemostasis: coagulation for anesthesiologists. Berlin, Heidelberg: Springer; 2015. p. 412–45. doi: 10.1007/978-3-642-55004-1_24.Google Scholar
  160. 160.
    Cheng D, Martin J. Evidence-based practice and health technology assessment: a call for anesthesiologists to engage in knowledge translation. Can J Anaesth. 2011;58(4):354–63. doi: 10.1007/s12630-011-9463-0.PubMedCrossRefGoogle Scholar
  161. 161.
    Martin J, Cheng D. Role of the anesthesiologist in the wider governance of healthcare and health economics. Can J Anaesth. 2013;60(9):918–28. doi: 10.1007/s12630-013-9994-7.PubMedCrossRefGoogle Scholar
  162. 162.
    Spahn DR, Rossaint R. All we ever wanted to know about perioperative bleeding. Eur J Anaesthesiol. 2013;30(6):267–9. doi: 10.1097/EJA.0b013e328361af11.PubMedCrossRefGoogle Scholar
  163. 163.
    Shafi S, Barnes SA, Rayan N, Kudyakov R, Foreman M, Cryer HG, Alam HB, Hoff W, Holcomb J. Compliance with recommended care at trauma centers: association with patient outcomes. J Am Coll Surg. 2014;219(2):189–98. doi: 10.1016/j.jamcollsurg.2014.04.005. Epub 2014 Apr 30.PubMedCrossRefGoogle Scholar
  164. 164.
    Rossaint R, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernández-Mondéjar E, Filipescu D, Hunt BJ, Komadina R, Maegele M, Nardi G, Neugebauer E, Ozier Y, Riddez L, Schultz A, Vincent JL, Spahn DR. STOP bleeding campaign. The STOP the bleeding campaign. Crit Care. 2013;17(2):136. doi: 10.1186/cc12579.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Klaus Görlinger
    • 1
    • 2
    Email author
  • Daniel Dirkmann
    • 1
  • Alexander A. Hanke
    • 3
  1. 1.Department of Anesthesiology and Intensive Care MedicineUniversity Hospital EssenEssenGermany
  2. 2.Tem International GmbHMunichGermany
  3. 3.Department of Anesthesiology and Intensive Care MedicineHannover Medical SchoolHannoverGermany

Personalised recommendations