Evaluation of Pedotransfer Equations to Predict Deep Soil Carbon Stock in Tropical Podzols Compared to Other Soils of the Brazilian Amazon Forest

  • O. J. R. PereiraEmail author
  • C. R. Montes
  • Y. Lucas
  • A. J. Melfi
Part of the Progress in Soil Science book series (PROSOIL)


According to the soil measurement procedures proposed by the Intergovernmental Panel on Climate Change (IPCC), the sampling depth for SOC stock estimation is centred on the upper soil horizons where root biomass and organic matter inputs are concentrated, depending on soil type and ecosystem, typically between 0 and 0.3 m. However, recent research in areas of Amazonian Podzols has shown that these soils store a great amount of carbon in thick spodic horizons (Bh). The amount of carbon stored in deep Bh horizons of Podzols (down to 3 m) may exceed 80 kg C m−2 in some regions of the Amazon. Thus, a better understanding of the vertical distribution of the SOC in Amazonian soils is an urgent matter considering the volume of carbon stored in Podzols, in a context of global climate change. Given this, the main goal of this research was to test and to propose pedotransfer functions based on several Amazonian soil profiles in order to estimate SOC stock and evaluate different soil attributes that could be used to infer indirectly, soil bulk density. For this propose, we selected around 320 pedons that were collected in the region of the Rio Negro Basin, to model the vertical distribution of SOC stock using a series of negative exponential profile depth functions and parametric/nonparametric functions for Podzols. The derived function parameters were used to predict carbon stock in deep horizons for all studied profiles and to explain the vertical behaviour of the SOC stock in Podzol profiles. The soil bulk density of Amazonian soils was properly modelled by symbolic regression, considering pH, clay content and SOC as the most relevant variables likely to affect soil bulk density values. We observed that the SOC stored in deep horizons of non-podzolic soils can be modelled by exponential decay equations. However, in Podzol, the vertical distribution of carbon stock is highly complex with a significant increase in deep horizons, which cannot be explained by negative exponential functions. Our findings have shown that the SOC stock of Amazonian soils, excluding Podzols, can be predicted by fitted exponential functions (RMSE: 0.9 kg C m−2). However, the vertical variation of SOC stored in Podzol profiles can be modelled just by complex equations (equal-area spline RMSE: 13.6 kg C m−2; Fourier RMSE 15.9 kg C m−2 and Sum of Sines RMSE: 15.0 kg C m−2) with a large number of parameters. According to the results achieved in this research, we concluded that the SOC stock of Podzols can be indirectly estimated for the whole soil profile by integrating the Sum of Sines and Fourier equations, which is not possible when applying an equal-area spline fitting due to the absence of model parameters. Moreover, spodic horizons store most of the carbon pool of podzolic regions and the Podzols have more than twice of the capability of storing carbon when compared to other Amazonian soils.


Soil organic carbon stock Podzols Amazon forest Pedotransfer equations 



This work was funded by grants from Brazilian FAPESP (São Paulo Research Foundation. Process number: 2012/12882-5) and CNPq, as well as French ARCUS (joint programme of Région PACA and French Ministry of Foreign Affairs).


  1. Arrouays D, P’elissier P (1994) Modeling carbon storage profiles in temperate forest humic loamy soils of France. Soil Sci 157:185–192. doi: 10.1097/00010694-199403000-00007 CrossRefGoogle Scholar
  2. Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163. doi: 10.1111/j.1365-2389.1996.tb01386.x CrossRefGoogle Scholar
  3. Batjes NH, Dijkshoorn JA (1999) Carbon and nitrogen stocks in the soils of the Amazon Region. Geoderma 89:273–286. doi: 10.1016/S0016-7061(98)00086-X CrossRefGoogle Scholar
  4. Benites VM, Machado P, Fidalgo ECC, Coelho RM, Madari EB (2007) Pedotransfer functions for estimating soil bulk density from existing soil survey reports in Brazil. Geoderma 39:90–7. doi:  10.1016/j.geoderma.2007.01.005 Google Scholar
  5. Bernoux M, Arrouays D, Cerri C, Volkoff B, Jolivet C (1998) Bulk densities of Brazilian Amazon soils related to other soil properties. Soil Sci Soc Am J 162:743–749CrossRefGoogle Scholar
  6. Bernoux M, Carvalho MDS, Volkoff B, Cerri CC (2002) Brazil’s soil carbon stocks. Soil Sci Soc Am J 66:888–896. doi: 10.2136/sssaj2002.8880 CrossRefGoogle Scholar
  7. Bravard S, RIGHI D (1989) Geochemical differences in an oxisolspodosol toposequence of Amazonia (Brazil). Geoderma 44:29–42. doi: 10.1016/0016-7061(89)90004-9 CrossRefGoogle Scholar
  8. Bishop TFA, Mcbratney AB, Laslett GM (1999) Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma 91:27–45. doi: 10.1016/S0016-7061(99)00003-8 CrossRefGoogle Scholar
  9. Blake G, Hartge K, Klute A (1986) Bulk density. Methods Soil Anal Part 1: Phys Mineral Methods 363–375Google Scholar
  10. Buringh P (1994) Organic carbon in the soils of the world. In Woodwell G (ed) The role of terrestrial vegetation in the global carbon cycle: measurement by remote sensing, SCOPE, vol 23. Wiley, NY, pp 91–109Google Scholar
  11. Burke IC, Yonker CM, Parton WJ, Cole CV, Flach K, Schimel DS (1989) Texture, climate, and cultivation effects on soil organic matter content in U.S. grassland soils. Soil Sci Soc Am J 53:800–805. doi: 10.2136/sssaj1989.03615995005300030029x CrossRefGoogle Scholar
  12. Chauvel A, Lucas Y, Boulet R (1987) On the genesis of the soil mantle of the region of Manaus, Central Amazonia, Brazil. Experientia 43:234–241. doi: 10.1007/BF01945546 CrossRefGoogle Scholar
  13. Dubroeucq D, Volkoff B (1998) From oxisols to spodosols and histosols: evolution of the soil mantles in the Rio Negro Basin (Amazonia). Catena 32:245–280. doi: 10.1016/S0341-8162(98)00045-9 CrossRefGoogle Scholar
  14. EMBRAPA (2011) Empresa Brasileira de Pesquisa Agropecuária. Centro Nacional de Pesquisas de Solos. Manual de métodos de análises de solos. 2 ed. Embrapa Solos, Rio de Janeiro, 230 pGoogle Scholar
  15. EMBRAPA (2014) Digital soils system information (Brazilian soils database) Rio de Janeiro. Accessed 25 Oct 2014.
  16. Eswaran H, Van Den Berg E, Reich P (1993) Organic carbon in soils of the world. Soil Sci Soc Am J 57:192–194. doi: 10.2136/sssaj1993.03615995005700010034x CrossRefGoogle Scholar
  17. FAO/IIASA/ISRIC/ISSCAS/JRC (2012) Harmonized world soil database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, AustriaGoogle Scholar
  18. Fritsch E, Allard T, Benedetti MF, Bardy M, do Nascimento NR, Li Y, Calas G (2009) Organic complexation and translocation of ferric iron in podzols of the Negro River watershed. Separation of secondary Fe species from Al species. Geochim Cosmochim Acta 73:1813–1825. doi: 10.1016/j.gca.2009.01.008 CrossRefGoogle Scholar
  19. IBGE. Geoscience Department (DGC) (2008) Coordenação de Recursos Naturais e Estudos Ambientais (CREN). Mapas georreferencias de recursos naturais. Scale 1:250:000, Digital Format: shp. Rio de Janeiro. Accessed 15 Aug 2014.
  20. Kimble JM, Heath LS, Birdsey R, Lal R (1990) The potential of US. Forest soils to sequester carbon and mitigate the greenhouse effect. CRC Publishers, Boca Raton, FL, 429. ISBN:9781566705837Google Scholar
  21. Koza J (1991) Evolving a computer program to generate random numbers using the genetic programming paradigm. In Proceedings of the fourth international conference on genetic algorithms, Morgan Kaufmann, La Jolla, CAGoogle Scholar
  22. Koza J (1992) Genetic programming: on the programming of computers by means of natural selection. The MIT PressGoogle Scholar
  23. Lucas Y, Chauvel A, Boulet R, Ranzani G, Scatolini F (1984) Transição latossolos-podzois sobre a formação Barreiras na região de Manaus, Amazônia. Rev. Bras. Cienc. Solo 8:325–335Google Scholar
  24. Lucas Y, Boulet R, Chauvel A (1988) Intervention simultanée des phénomènes d’enfoncement vertical et de transformation latérale dans la mise en place de systèmes de sols de la zone tropicale humide. Cas des systèmes sols ferrallitiques – podzols de l’Amazonie Brésilienne. C R Acad Sci Paris Ser lla 306:1395–1400Google Scholar
  25. Lucas Y, Nahon D, Cornu S, Eyrolle F (1996) Genèse et fonctionnement des sols en milieu equatorial. C R Acad Sci Paris Ser IIa 322:1–16Google Scholar
  26. Mcbratney AB, Mendonça-Santos ML, Minasny B (2003) On digital soil mapping. Geoderma 117:3–52. doi: 10.1016/S0016-7061(03)00223-4 CrossRefGoogle Scholar
  27. Minasny B, Mcbratney AB, Mendonça-Santos ML, Odeh IOA, Guyon B (2006) Pre-diction and digital mapping of soil carbon storage in the Lower Namoi Valley. Aust J Soil Res 44:233–244CrossRefGoogle Scholar
  28. Montes CR, Lucas Y, Melfi AJ, Ishida DA (2007) Systèmes sols ferrallitiques–podzols et genèse des kaolins. C R Geosci 339:50–56. doi: 10.1016/j.crte.2006.11.001 CrossRefGoogle Scholar
  29. Montes CR, Lucas Y, Pereira OJR, Achard R, Grimaldi M, Melfi AJ (2011) Deep plant-derived carbon storage in Amazonian podzols. Biogeosciences 8:113–120. doi: 10.5194/bg-8-113-2011 CrossRefGoogle Scholar
  30. Nascimento NR, Bueno GT, Fritsch E, Herbillon AJ, Allard T, Melfi A, Astolfo R, Boucher H, Li Y (2004) Podzolization as a deferralitization process: a study of an Acrisol-Podzol sequence derived from Palaeozoic sandstones in the northern upper Amazon Basin. Eur J Soil Sci 55:523–538CrossRefGoogle Scholar
  31. Patel-Sorrentino N, Lucas Y, Eyrolles F, Melfi AJ (2007) Fe, Al and Si species and organic matter leached off a ferrallitic and podzolic soil system from Central Amazonia. Geoderma 137:444–454. doi: 10.1016/j.geoderma.2006.10.002 CrossRefGoogle Scholar
  32. Pereira OJR, Montes CR, Lucas Y, Santin RC, MelfI AJ (2015) A multisensor approach for mapping plant-derived carbon storage in Amazonian podzols. Int J Remote Sens 36(8):2076–2092. doi: 10.1080/01431161.2015.1034896 CrossRefGoogle Scholar
  33. Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298:156–159CrossRefGoogle Scholar
  34. Renshaw E, Ford ED (1984) The description of spatial pattern using two-dimensional spectral analysis. Vegetatio 56:75–85Google Scholar
  35. Schmidt M, Lipson H (2009) Distilling free-form natural laws from experimental data. Science 324(5923):81–85CrossRefGoogle Scholar
  36. Tomasella J, Hodnett MG (1998) Estimating soil water retention characteristics from limited data in Brazilian. Soil Sci 163:190–202. doi: 10.1097/00010694-199803000-00003 CrossRefGoogle Scholar
  37. Webster R (1978) Mathematical treatment of soil information’. In Proceedings of the 11th international congress of soil science. Edmonton, Canada, vol 3, pp 161–190Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • O. J. R. Pereira
    • 1
    Email author
  • C. R. Montes
    • 1
  • Y. Lucas
    • 2
  • A. J. Melfi
    • 3
  1. 1.CENA, NUPEGELUniversidade de São PauloPiracicaba, São PauloBrazil
  2. 2.PROTEEUniversité de ToulonLa Garde, ProvanceFrance
  3. 3.IEE, ESALQUniversidade de São PauloSão PauloBrazil

Personalised recommendations