A Hybrid Imperialist Competitive Algorithm for the Flexible Job Shop Problem

  • Behrooz GhasemishabankarehEmail author
  • Nasser Shahsavari-Pour
  • Mohammad-Ali Basiri
  • Xiaodong Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9592)


Flexible job shop scheduling problem (FJSP) is one of the hardest combinatorial optimization problems known to be NP-hard. This paper proposes a novel hybrid imperialist competitive algorithm with simulated annealing (HICASA) for solving the FJSP. HICASA explores the search space by using imperial competitive algorithm (ICA) and use a simulated annealing (SA) algorithm for exploitation in the search space. In order to obtain reliable results from HICASA algorithm, a robust parameter design is applied. HICASA is compared with the widely-used genetic algorithm (GA) and the relatively new imperialist competitive algorithm (ICA). Experimental results suggest that HICASA algorithm is superior to GA and ICA on the FJSP.


Flexible job shop scheduling problem Imperialist competitive algorithm Genetic algorithm Simulated annealing algorithm Taguchi parameter design 


  1. 1.
    Gary, M.R., Johnson, D.S., Sethi, R.: The complexity of flow shop and job shop scheduling. Math. Oper. Res. 1(2), 117–129 (1976)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Rossi, A., Dini, G.: Flexible job-shop scheduling with routing flexibility and separable setup times using ant colony optimization method. Robot. Comput. Integr. Manuf. 23(5), 503–516 (2007)CrossRefGoogle Scholar
  3. 3.
    Brandimarte, P.: Routing and scheduling in a flexible job shop by tabu search. Ann. Oper. Res. 41(3), 157–183 (1993)CrossRefzbMATHGoogle Scholar
  4. 4.
    Brucker, P., Schlie, R.: Job-shop scheduling with multi-purpose machines. Computing 45(4), 369–375 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Thamilselvan, R., Balasubramanie, P.: Integrating genetic algorithm, tabu search approach for job shop scheduling. Int. J. Comput. Sci. Inf. Secur. 2(1), 1–6 (2009)Google Scholar
  6. 6.
    Najid, N.M., Dauzere-Peres, S., Zaidat, A.: A modified simulated annealing method for flexible job shop scheduling problem. In: 2002 IEEE International Conference on Systems, Man and Cybernetics, vol. 5 (2002)Google Scholar
  7. 7.
    Colorni, A., Dorigo, M., Maniezzo, V., Trubian, M.: Ant system for job-shop scheduling. Belg. J. Oper. Res. Statist. Comput. Sci. 34, 39–54 (1994)zbMATHGoogle Scholar
  8. 8.
    Chen, H., Ihlow, J., Lehmann, C.: A genetic algorithm for flexible job-shop scheduling. In: Proceeding of IEEE International Conference on Robotics, pp. 1120–1125 (1999)Google Scholar
  9. 9.
    Atashpaz-Garagari, E., Lucas, C.: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: IEEE Congress on Evolutionary Computation, pp. 4661–4667 (2007)Google Scholar
  10. 10.
    Khabbazi, A., Atashpaz-Gargari, E., Lucas, C.: Imperialist competitive algorithm for minimum bit error rate beam forming. Int. J. Bio-Inspired Comput. 1(1–2), 125–133 (2009)CrossRefGoogle Scholar
  11. 11.
    Nazari-Shirkouhi, S., Eivazy, H., Ghods, R., Rezaie, K., Atashpaz-Gargari, E.: Solving the integrated product mix-outsourcing problem using the imperialist competitive algorithm. Expert Syst. Appl. 37(12), 7615–7626 (2010)CrossRefGoogle Scholar
  12. 12.
    Lucas, C., Nasiri-Gheidari, Z., Tootoonchian, F.: Application of an imperialist competitive algorithm to the design of a linear induction motor. Energy Convers. Manag. 51(7), 1407–1411 (2010)CrossRefGoogle Scholar
  13. 13.
    Kaveh, A., Talatahari, S.: Optimum design of skeletal structures using imperialist competitive algorithm. Comput. Struct. 88(21–22), 1220–1229 (2010)CrossRefGoogle Scholar
  14. 14.
    Shokrollahpour, E., Zandieh, M., Dorri, B.: A novel imperialist competitive algorithm for bi-criteria scheduling of the assembly flow shop problem. Int. J. Prod. Res. 49(11), 3087–3103 (2011)CrossRefGoogle Scholar
  15. 15.
    Attar, S.F., Mohammadi, M., Tavakkoli-moghaddam, R.: A novel imperialist competitive algorithm to solve flexible flow shop scheduling problem in order to minimize maximum completion time. Int. J. Comput. Appl. 28(10), 27–32 (2011)Google Scholar
  16. 16.
    Tavakkoli-Moghaddam, R., Khalili, M., Naderi, B.: A hybridization of simulated annealing and electromagnetic-like mechanism for job shop problems with machine availability and sequence-dependent setup times to minimize total weighted tardiness. Soft. Comput. 13(10), 995–1006 (2009)CrossRefGoogle Scholar
  17. 17.
    Naderi, B., Tavakkoli-Moghaddam, R., Khalili, M.: Electromagnetism-like mechanism and simulated annealing algorithms for flow shop scheduling problems minimizing the total weighted tardiness and makespan. Knowl. Based Syst. 23(2), 77–85 (2010)CrossRefGoogle Scholar
  18. 18.
    Soke, A., Bingul, Z.: Hybrid genetic algorithm and simulated annealing for two-dimensional non-guillotine rectangular packing problems. Eng. Appl. Artif. Intel. 19(5), 557–567 (2006)CrossRefGoogle Scholar
  19. 19.
    Li, W.D., Ong, S.K., Nee, A.Y.C.: Hybrid genetic algorithm and simulated annealing approach for the optimization of process plans for prismatic parts. Int. J. Prod. Res. 40(8), 1899–1922 (2002)CrossRefzbMATHGoogle Scholar
  20. 20.
    Osman, I.H., Christofides, N.: Capacitated clustering problems by hybrid simulated annealing and tabu search. Int. Trans. Oper. Res. 1(3), 317–336 (1994)CrossRefzbMATHGoogle Scholar
  21. 21.
    Swarnkar, R., Tiwari, M.K.: Modeling machine loading problem of FMSs and its solution methodology using a hybrid tabu search and simulated annealing-based heuristic approach. Robot. Comput. Integr. Manuf. 20(3), 199–209 (2004)CrossRefGoogle Scholar
  22. 22.
    Behnamian, J., Zandieh, M., Fatemi Ghomi, S.M.T.: Parallel-machine scheduling problems with sequence-dependent setup times using an ACO, SA and VNS hybrid algorithm. Expert. Syst. Appl. 36(6), 9637–9644 (2009)CrossRefGoogle Scholar
  23. 23.
    Shahsavari-pour, N., Ghasemishabankareh, B.: A novel hybrid meta-heuristic algorithm for solving multi objective flexible job shop scheduling. J. Manuf. syst. 32(4), 771–780 (2013)CrossRefGoogle Scholar
  24. 24.
    Zhang, G.H., Shao, X.Y., Li, P.G., Gao, L.: An effective hybrid particle swarm optimization algorithm for multi-objective flexible job shop scheduling problem. Comput. Ind. Eng. 56(4), 1309–1318 (2009)CrossRefGoogle Scholar
  25. 25.
    Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  26. 26.
    Kacem, I., Hammadi, S., Borne, P.: Pareto-optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic. Math. Comput. Simul. 60(3–5), 245–276 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  27. 27.
    Taguchi, G.: Introduction to Quality Engineering. Asian Productivity Organization/UNIPUB, White Plains (1986)Google Scholar
  28. 28.
    Phadke, M.S.: Quality Engineering Using Robust Design. Prentice-Hall, New Jersey (1986)Google Scholar
  29. 29.
    Molla-Alizadeh-Zavardehi, S., Hajiaghaei-Keshteli, M., Tavakoli-Moghaddam, R.: Solving a capacitated fixed-charge transportation problem by artificial immune and genetic algorithms with a Prüfer number representation. Expert Syst. Appl. 38(8), 10462–10474 (2011)CrossRefGoogle Scholar
  30. 30.
    Hajiaghaei-Keshteli, M., Molla-Alizadeh-Zavardehi, S., Tavakoli-Mogaddam, R.: Addressing a nonlinear fixed-charge transportation problem using a spanning tree-based genetic algorithm. Comput. Ind. Eng. 59(2), 259–271 (2010)CrossRefGoogle Scholar
  31. 31.
    Behnamian, J., Zandieh, M.: A discrete colonial competitive algorithm for hybrid flowshop scheduling to minimize earliness and quadratic tardiness penalties. Expert Syst. Appl. 38(13), 14490–14498 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Behrooz Ghasemishabankareh
    • 1
    Email author
  • Nasser Shahsavari-Pour
    • 2
  • Mohammad-Ali Basiri
    • 3
  • Xiaodong Li
    • 1
  1. 1.School of Computer Science and ITRMIT UniversityMelbourneAustralia
  2. 2.Department of Industrial ManagementVali-e-Asr UniversityRafsanjanIran
  3. 3.Department of Industrial Engineering, Science and Research BranchIslamic Azad UniversityKermanIran

Personalised recommendations