Advertisement

Multi-objective Genetic Programming for Figure-Ground Image Segmentation

  • Yuyu LiangEmail author
  • Mengjie Zhang
  • Will N. Browne
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9592)

Abstract

Figure-ground segmentation is a crucial preprocessing step in areas of computer vision and image processing. As an evolutionary computation technique, genetic programming (GP) can evolve algorithms automatically for complex problems and has been introduced for image segmentation. However, GP-based methods face a challenge to control the complexity of evolved solutions. In this paper, we develop a novel exponential function to measure the solution complexity. This complexity measure is utilized as a fitness evaluation measure in GP in two ways: one method is to combine it with the classification accuracy linearly to form a weighted sum fitness function; the other is to treat them separately as two objectives. Based on this, we propose a weighted sum GP method and a multi-objective GP (MOGP) method for segmentation tasks. We select four types of test images from bitmap, Brodatz texture, Weizmann and PASCAL databases. The proposed methods are compared with a reference GP method, which is single-objective (the classification accuracy) without considering the solution complexity. The results show that the new approaches, especially MOGP, can significantly reduce the solution complexity and the training time without decreasing the segmentation performance.

Keywords

Figure-ground segmentation Genetic programming Solution complexity Multi-objective optimisation 

References

  1. 1.
  2. 2.
    The pascal visual object classes homepage. http://pascallin.ecs.soton.ac.uk/challenges/VOC/
  3. 3.
    Song, V.C.A.: Texture segmentation by genetic programming. Evol. Comput. 16(4), 416–481 (2008)CrossRefGoogle Scholar
  4. 4.
    Al-Sahaf, H., Song, A., Neshatian, K., Zhang, M.: Extracting image features for classification by two-tier genetic programming. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2012)Google Scholar
  5. 5.
  6. 6.
    Ashburner, J., Friston, K.J.: Unified segmentation. Neuroimage 26(3), 839–851 (2005)CrossRefGoogle Scholar
  7. 7.
    Borenstein, E.: Weizmann horse database. http://www.msri.org/people/members/eranb/
  8. 8.
    Borenstein, E., Sharon, E., Ullman, S.: Combining top-down and bottom-up segmentation. In: Proceedings IEEE Workshop on Perceptual Organization in Computer Vision, pp. 1–8 (2004)Google Scholar
  9. 9.
    Borenstein, E., Ullman, S.: Class-specific, top-down segmentation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part II. LNCS, vol. 2351, pp. 109–122. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Cote, M., Saeedi, P., et al.: Hierarchical image segmentation using a combined geometrical and feature based approach. J. Data Anal. Inf. Process. 2(04), 117 (2014)Google Scholar
  11. 11.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  12. 12.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  13. 13.
    Kuhn, M.: Futility analysis in the crossvalidation of machine learning models, pp. 1–22 (2014). arXiv:1405.6974
  14. 14.
    Liang, Y., Zhang, M., Browne, W.N.: Image segmentation: a survey of methods based on evolutionary computation. In: Dick, G., Browne, W.N., Whigham, P., Zhang, M., Bui, L.T., Ishibuchi, H., Jin, Y., Li, X., Shi, Y., Singh, P., Tan, K.C., Tang, K. (eds.) SEAL 2014. LNCS, vol. 8886, pp. 847–859. Springer, Heidelberg (2014)Google Scholar
  15. 15.
    Liang, Y., Zhang, M., Browne, W.N.: A supervised figure-ground segmentation method using genetic programming. In: Mora, A.M., Squillero, G. (eds.) Applications of Evolutionary Computation. Lecture Notes in Computer Science, vol. 9028, pp. 491–503. Springer, Heidelberg (2015)Google Scholar
  16. 16.
    Luke, S., Panait, L.: Lexicographic parsimony pressure. In: Proceedings of GECCO-2002, pp. 829–836. Morgan Kaufmann Publishers (2002)Google Scholar
  17. 17.
    Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Poli, R.: Genetic programming for feature detection and image segmentation. Evol. Comput. 1143, 110–125 (1996)CrossRefGoogle Scholar
  19. 19.
    Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming. Published via http://lulu.com and freely available at http://www.gp-field-guide.org.uk, UK (2008)
  20. 20.
    Poli, R.: Genetic Programming for feature detection and image segmentation. In: Fogarty, T.C. (ed.) AISB-WS 1996. LNCS, vol. 1143, pp. 110–125. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  21. 21.
    Sarro, F., Ferrucci, F., Gravino, C.: Single and multi objective genetic programming for software development effort estimation. In: Proceedings of the 27th Annual ACM Symposium on Applied Computing, pp. 1221–1226. ACM (2012)Google Scholar
  22. 22.
    Shao, L., Liu, L., Li, X.: Feature learning for image classification via multiobjective genetic programming. IEEE Trans. Neural Netw. Learn. Syst. 25(7), 1359–1371 (2014)CrossRefGoogle Scholar
  23. 23.
    Singh, T., Kharma, N., Daoud, M., Ward, R.: Genetic programming based image segmentation with applications to biomedical object detection. In: Proceedings of the 11th Annual conference on Genetic and evolutionary computation, pp. 1123–1130. ACM (2009)Google Scholar
  24. 24.
    Song, A., Ciesielski, V.: Texture segmentation by genetic programming. Evol. Comput. 16(4), 461–481 (2008)CrossRefGoogle Scholar
  25. 25.
    Zhang, M., Andreae, P., Pritchard, M.: Pixel statistics and false alarm area in genetic programming for object detection. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 455–466. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    Zou, W., Bai, C., Kpalma, K., Ronsin, J.: Online glocal transfer for automatic figure-ground segmentation. IEEE Trans. Image Process. 23(5), 2109–2121 (2014)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Engineering and Computer ScienceVictoria University of WellingtonWellingtonNew Zealand

Personalised recommendations