Advertisement

A New Subspace-Based Algorithm for Efficient Spatially Adaptive Sparse Grid Regression, Classification and Multi-evaluation

  • David PfanderEmail author
  • Alexander Heinecke
  • Dirk Pflüger
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 109)

Abstract

As data has become easier to collect and precise sensors have become ubiquitous, data mining with large data sets has become an important problem. Because sparse grid data mining scales only linearly in the number of data points, large data mining problems have been successfully addressed with this method. Still, highly efficient algorithms are required to process very large problems within a reasonable amount of time.

In this paper, we introduce a new algorithm that can be used to solve regression and classification problems on spatially adaptive sparse grids. Additionally, our approach can be used to efficiently evaluate a spatially adaptive sparse grid function at multiple points in the domain. In contrast to other algorithms for these applications, our algorithm fits well to modern hardware and performs only few unnecessary basis function evaluations.

We evaluated our algorithm by comparing it to a highly efficient implementation of a streaming algorithm for sparse grid regression. In our experiments, we observed speedups of up to 7×, being faster in all experiments that we performed.

Notes

Acknowledgements

This work was financially supported by the Juniorprofessurenprogramm of the Landesstiftung Baden-Württemberg.

References

  1. 1.
    J.K. Adelman-McCarthy et al., The fifth data release of the Sloan digital sky survey. Astrophys. J. Suppl. Ser. 172(2), 634 (2007)Google Scholar
  2. 2.
    C.M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics) (Springer, New York/Secaucus, 2006)zbMATHGoogle Scholar
  3. 3.
    H.-J. Bungartz, M. Griebel, Sparse grids. Acta Numer. 13, 1–123 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    H.-J. Bungartz, D. Pflüger, S. Zimmer, Adaptive sparse grid techniques for data mining, in Modelling, Simulation and Optimization of Complex Processes 2006, Proceedings of the International Conference HPSC, Hanoi, ed. by H. Bock, E. Kostina, X. Hoang, R. Rannacher (Springer, 2008), pp. 121–130Google Scholar
  5. 5.
    G. Buse, D. Pflüger, R. Jacob, Efficient pseudorecursive evaluation schemes for non-adaptive sparse grids, in Sparse Grids and Applications – Munich 2012. Lecture Notes in Computational Science and Engineering (Springer, Heidelberg, 2013), http://link.springer.com/chapter/10.1007%2F978-3-319-04537-5_1Google Scholar
  6. 6.
    J.H. Friedman, Multivariate adaptive regression splines. Ann. Stat. 19(1), 1–67 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    J. Garcke, Maschinelles Lernen durch Funktionsrekonstruktion mit verallgemeinerten dünnen Gittern. PhD thesis, Universität Bonn, Institut für Numerische Simulation (2004)Google Scholar
  8. 8.
    J. Garcke, M. Griebel, M. Thess, Data mining with sparse grids. Computing, 67(3), 225–253 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    A. Heinecke, D. Pflüger, Multi- and many-core data mining with adaptive sparse grids, in Proceedings of the 8th ACM International Conference on Computing Frontiers CF ’11, New York (ACM, 2011), pp. 29:1–29:10Google Scholar
  10. 10.
    A. Heinecke, D. Pflüger, Emerging architectures enable to boost massively parallel data mining using adaptive sparse grids. Int. J. Parallel Programm. 41(3), 357–399 (2012)CrossRefGoogle Scholar
  11. 11.
    A. Heinecke, R. Karlstetter, D. Pflüger, H.-J. Bungartz, Data mining on vast datasets as a cluster system benchmark. Concurr. Comput. Pract. Exp. (2015). ISSN: 1532-0634, doi:10.1002/cpe.3514
  12. 12.
    Intel Cooperation, Intel ®; 64 and IA-32 Architectures Optimization Reference Manual (2014), http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf Google Scholar
  13. 13.
    A. Murarasu, G. Buse, J. Weidendorfer, D. Pflüger, A. Bode, fastsg: a fast routines library for sparse grids, in Proceedings of the International Conference on Computational Science (ICCS 2012), Omaha (Procedia Computer Science, 2012)Google Scholar
  14. 14.
    D. Pflüger, Spatially Adaptive Sparse Grids for High-Dimensional Problems (Verlag Dr.Hut, Munich, 2010)zbMATHGoogle Scholar
  15. 15.
    D. Pflüger, Spatially adaptive refinement, in Sparse Grids and Applications, ed. by J. Garcke, M. Griebel. Lecture Notes in Computational Science and Engineering (Springer, Berlin/Heidelberg, 2012), pp. 243–262Google Scholar
  16. 16.
    J.R. Shewchuk, An introduction to the conjugate gradient method without the agonizing pain. Technical report, School of Computer Science, Carnegie Mellon University (1994)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • David Pfander
    • 1
    Email author
  • Alexander Heinecke
    • 2
  • Dirk Pflüger
    • 1
  1. 1.University of Stuttgart, IPVSStuttgartGermany
  2. 2.Intel CooperationSanta ClaraUSA

Personalised recommendations