Advertisement

From Data to Uncertainty: An Efficient Integrated Data-Driven Sparse Grid Approach to Propagate Uncertainty

  • Fabian FranzelinEmail author
  • Dirk Pflüger
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 109)

Abstract

We present a novel data-driven approach to propagate uncertainty. It consists of a highly efficient integrated adaptive sparse grid approach. We remove the gap between the subjective assumptions of the input’s uncertainty and the unknown real distribution by applying sparse grid density estimation on given measurements. We link the estimation to the adaptive sparse grid collocation method for the propagation of uncertainty. This integrated approach gives us two main advantages: First, the linkage of the density estimation and the stochastic collocation method is straightforward as they use the same fundamental principles. Second, we can efficiently estimate moments for the quantity of interest without any additional approximation errors. This includes the challenging task of solving higher-dimensional integrals. We applied this new approach to a complex subsurface flow problem and showed that it can compete with state-of-the-art methods. Our sparse grid approach excels by efficiency, accuracy and flexibility and thus can be applied in many fields from financial to environmental sciences.

Keywords

Uncertainty Quantification Sparse Grid Polynomial Chaos Expansion Cross Entropy Stochastic Collocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors acknowledge the German Research Foundation (DFG) for its financial support of the project within the Cluster of Excellence in Simulation Technology at the University of Stuttgart.

References

  1. 1.
    A. Alwan, N. Aluru, Improved statistical models for limited datasets in uncertainty quantification using stochastic collocation. J. Comput. Phys. 255, 521–539 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    I. Babuška, F. Nobile, R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45(3), 1005–1034 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    H.-J. Bungartz, M. Griebel, Sparse grids. Acta Numer. 13, 147–269 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    T.F. Chan, G.H. Golub, R.J. LeVeque, Algorithms for computing the sample variance: analysis and recommendations. Am. Stat. 37(3), 242–247 (1983)MathSciNetzbMATHGoogle Scholar
  5. 5.
    H. Class, A. Ebigbo, R. Helmig, H. Dahle, J. Nordbotten, M. Celia, P. Audigane, M. Darcis, J. Ennis-King, Y. Fan, B. Flemisch, S. Gasda, M. Jin, S. Krug, D. Labregere, A. Naderi Beni, R. Pawar, A. Sbai, S. Thomas, L. Trenty, L. Wei, A benchmark study on problems related to CO2 storage in geologic formations. Comput. Geosci. 13(4), 409–434 (2009)CrossRefzbMATHGoogle Scholar
  6. 6.
    M. Eldred, J. Burkardt, Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification, in Aerospace Sciences Meetings (American Institute of Aeronautics and Astronautics, Reston, 2009)Google Scholar
  7. 7.
    H.C. Elman, C.W. Miller, Stochastic collocation with kernel density estimation. Comput. Methods Appl. Mech. Eng. 245–246(0), 36–46 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    F. Franzelin, P. Diehl, D. Pflüger, Non-intrusive uncertainty quantification with sparse grids for multivariate peridynamic simulations, in Meshfree Methods for Partial Differential Equations VII, ed. by M. Griebel, M.A. Schweitzer. Volume 100 of Lecture Notes in Computational Science and Engineering (Springer, Cham, 2015), pp. 115–143Google Scholar
  9. 9.
    J. Garcke, Maschinelles Lernen durch Funktionsrekonstruktion mit verallgemeinerten dünnen Gittern, Ph.D. thesis, Universität Bonn, Institut für Numerische Simulation, 2004Google Scholar
  10. 10.
    M. Griebel, M. Hegland. A finite element method for density estimation with gaussian process priors. SIAM J. Numer. Anal. 47(6), 4759–4792 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    M. Hegland, G. Hooker, S. Roberts, Finite element thin plate splines in density estimation. ANZIAM J. 42, 712–734 (2000)MathSciNetzbMATHGoogle Scholar
  12. 12.
    J. Jakeman, S. Roberts, Local and dimension adaptive stochastic collocation for uncertainty quantification, in Sparse Grids and Applications, ed. by J. Garcke, M. Griebel. Volume 88 of Lecture Notes in Computational Science and Engineering (Springer, Berlin/Heidelberg, 2013), pp. 181–203Google Scholar
  13. 13.
    J.D. Jakeman, R. Archibald, D. Xiu, Characterization of discontinuities in high-dimensional stochastic problems on adaptive sparse grids. J. Comput. Phys. 230(10), 3977–3997 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    A. Kopp, H. Class, H. Helmig, Investigations on CO2 storage capacity in saline aquifers – part 1: dimensional analysis of flow processes and reservoir characteristics. Int. J. Greenh. Gas Control 3, 263–276 (2009)CrossRefGoogle Scholar
  15. 15.
    X. Ma, N. Zabaras, An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations. J. Comput. Phys. 228(8), 3084–3113 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    X. Ma, N. Zabaras, An adaptive high-dimensional stochastic model representation technique for the solution of stochastic partial differential equations. J. Comput. Phys. 229(10), 3884–3915 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    O.P.L. Maître, O.M. Knio, Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics. Scientific Computation (Springer, Dordrecht/New York, 2010)CrossRefzbMATHGoogle Scholar
  18. 18.
    P. Mills, Efficient statistical classification of satellite measurements. Int. J. Remote Sens. 32(21), 6109–6132 (2011)CrossRefGoogle Scholar
  19. 19.
    M. Navarro, J. Witteveen, J. Blom, Polynomial chaos expansion for general multivariate distributions with correlated variables, Technical report, Centrum Wiskunde & Informatica, June 2014Google Scholar
  20. 20.
    F. Nobile, R. Tempone, C.G. Webster, A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309–2345 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    S. Oladyshkin, H. Class, R. Helmig, W. Nowak, A concept for data-driven uncertainty quantification and its application to carbon dioxide storage in geological formations. Adv. Water Resour. 34(11), 1508–1518 (2011)CrossRefGoogle Scholar
  22. 22.
    S. Oladyshkin, H. Class, R. Helmig, W. Nowak, An integrative approach to robust design and probabilistic risk assessment for CO2 storage in geological formations. Comput. Geosci. 15(3), 565–577 (2011)CrossRefGoogle Scholar
  23. 23.
    S. Oladyshkin, W. Nowak, Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion. Reliab. Eng. Syst. Saf. 106(0), 179–190 (2012)CrossRefGoogle Scholar
  24. 24.
    B. Peherstorfer, Model order reduction of parametrized systems with sparse grid learning techniques. Ph.D. thesis, Technical University of Munich, Aug 2013Google Scholar
  25. 25.
    B. Peherstorfer, C. Kowitz, D. Pflüger, H.-J. Bungartz, Selected recent applications of sparse grids. Numer. Math. Theory Methods Appl. 8(01), 47–77, Feb 2015MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    B. Peherstorfer, D. Pflüger, H.-J. Bungartz, Density estimation with adaptive sparse grids for large data sets, in Proceedings of the 2014 SIAM International Conference on Data Mining, Philadelphia, 2014, pp. 443–451Google Scholar
  27. 27.
    D. Pflüger, Spatially Adaptive Sparse Grids for High-Dimensional Problems (Verlag Dr. Hut, Munich, 2010)zbMATHGoogle Scholar
  28. 28.
    D. Pflüger, Spatially adaptive refinement, in Sparse Grids and Applications, ed. by J. Garcke, M. Griebel. Lecture Notes in Computational Science and Engineering (Springer, Berlin/Heidelberg, 2012), pp. 243–262Google Scholar
  29. 29.
    D. Pflüger, B. Peherstorfer, H.-J. Bungartz, Spatially adaptive sparse grids for high-dimensional data-driven problems. J. Complex. 26(5), 508–522 (2010). Published online Apr 2010Google Scholar
  30. 30.
    P. Ram, A.G. Gray, Density estimation trees, in Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, 21–24 Aug 2011, pp. 627–635Google Scholar
  31. 31.
    M. Rosenblatt, Remarks on a multivariate transformation. Ann. Math. Stat. 23(1952), 470–472 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    B. Silverman, Density Estimation for Statistics and Data Analysis, 1st edn. (Chapman & Hall, London/New York, 1986)CrossRefzbMATHGoogle Scholar
  33. 33.
    W. Walker, P. Harremoes, J. Rotmans, J. van der Sluijs, M. van Asselt, P. Janssen, M.K. von Krauss, Defining uncertainty: a conceptual basis for uncertainty management in model-based decision support. Integr. Assess. 4(1), 5–17 (2005)CrossRefGoogle Scholar
  34. 34.
    X. Wan, E. Karniadakis, Multi-element generalized polynomial chaos for arbitrary probability measures. SIAM J. Sci. Comput. 28(3), 901–928 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    M. Xiang, N. Zabaras, An efficient Bayesian inference approach to inverse problems based on an adaptive sparse grid collocation method. Inverse Probl. 25(3), 035013 (2009)Google Scholar
  36. 36.
    D. Xiu, J.S. Hesthaven, High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27(3), 1118–1139 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    D. Xiu, G. Karniadakis, The Wiener–askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    D. Xiu, G.E. Karniadakis, Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187(1), 137–167 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    G. Zhang, D. Lu, M. Ye, M.D. Gunzburger, C.G. Webster, An adaptive sparse-grid high-order stochastic collocation method for Bayesian inference in groundwater reactive transport modeling. Water Resour. Res. 49(10), 6871–6892 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Simulation Software EngineeringIPVS, University of StuttgartStuttgartGermany

Personalised recommendations