Advertisement

Applications of Calorimetry on Polymer Nanocomposites

  • Qingliang He
  • Xingru Yan
  • Jiang Guo
  • Xi Zhang
  • Huige Wei
  • Dawei Jiang
  • Xin Wei
  • Daowei Ding
  • Suying Wei
  • Evan K. Wujcik
  • John Zhanhu Guo
Chapter

Abstract

In this chapter, the application of two commonly used calorimetries, i.e., differential scanning calorimetry (DSC) and microscale combustion calorimetry (MCC), will be introduced. DSC is mainly used to study the melting and crystallization behaviors of polymers/polymer nanocomposites. Here, the nanofiller-dependent melting and crystallization behaviors will be emphasized. MCC is employed to evaluate the flammability of polymeric materials and their polymer matrix nanocomposites. The heat release-related parameters are of great significance for determining the fire risks for flammable polymers and will be used to interpret the mechanism for the flammability reduction.

Keywords

Differential scanning calorimetry Microscale combustion calorimetry Polymer matrix nanocomposites Polypropylene Polyethylene 

Notes

Acknowledgement

This work is financially supported by start-up fund from University of Tennessee. S. Wei acknowledges the donors of the American Chemical Society Petroleum Research Fund (ACS PRF# 53930-ND6) for partial support of this research.

References

  1. 1.
    (a) Lyon RE, Walters R, Stoliarov S (2007) Screening flame retardants for plastics using microscale combustion calorimetry. Polym Eng Sci 47(10):1501–1510; (b) Lyon RE, Walters RN (2004) Pyrolysis combustion flow calorimetry. J Anal Appl Pyrolysis 71(1):27–46; (c) Lyon R, Walters R, Stoliarov S (2007) Thermal analysis of flammability. J Therm Anal Calorim 89(2):441–448Google Scholar
  2. 2.
    Yang CQ, He Q, Lyon RE, Hu Y (2010) Investigation of the flammability of different textile fabrics using micro-scale combustion calorimetry. Polym Degrad Stab 95(2):108–115CrossRefGoogle Scholar
  3. 3.
    He Q, Yuan T, Wei S, Guo Z (2013) Catalytic and synergistic effects on thermal stability and combustion behavior of polypropylene: influence of maleic anhydride grafted polypropylene stabilized cobalt nanoparticles. J Mater Chem A 1(42):13064–13075CrossRefGoogle Scholar
  4. 4.
    Höhne G, Hemminger W, Flammersheim H-J (2003) Differential scanning calorimetry. Springer Science & Business Media, Berlin - HeidelbergGoogle Scholar
  5. 5.
    (a) He Q, Yuan T, Zhu J, Luo Z, Haldolaarachchige N, Sun L, Khasanov A, Li Y, Young DP, Wei S (2012) Magnetic high density polyethylene nanocomposites reinforced with in-situ synthesized Fe@ FeO core-shell nanoparticles. Polymer 53(16):3642–3652; (b) He Q, Yuan T, Zhang X, Luo Z, Haldolaarachchige N, Sun L, Young DP, Wei S, Guo Z (2013) Magnetically soft and hard polypropylene/cobalt nanocomposites: role of maleic anhydride grafted polypropylene. Macromolecules 46(6):2357–2368Google Scholar
  6. 6.
    (a) Carlson ED, Krejchi MT, Shah CD, Terakawa T, Waymouth RM, Fuller GG (1998) Rheological and thermal properties of elastomeric polypropylene. Macromolecules 31(16):5343–5351; (b) Rozanski A, Galeski A, Debowska M (2011) Initiation of cavitation of polypropylene during tensile drawing. Macromolecules 44:20–28Google Scholar
  7. 7.
    Wunderlich B, Czornyj G (1977) A study of equilibrium melting of polyethylene. Macromolecules 10(5):906–913CrossRefGoogle Scholar
  8. 8.
    He Q, Yuan T, Yan X, Ding D, Wang Q, Luo Z, Shen TD, Wei S, Cao D, Guo Z (2014) Flame-retardant polypropylene/multiwall carbon nanotube nanocomposites: effects of surface functionalization and surfactant molecular weight. Macromol Chem Phys 215(4):327–340CrossRefGoogle Scholar
  9. 9.
    Zhu J, Wei S, Li Y, Sun L, Haldolaarachchige N, Young DP, Southworth C, Khasanov A, Luo Z, Guo Z (2011) Surfactant-free synthesized magnetic polypropylene nanocomposites: rheological, electrical, magnetic, and thermal properties. Macromolecules 44:4382–4391CrossRefGoogle Scholar
  10. 10.
    Purohit PJ, Huacuja-Sánchez JE, Wang DY, Emmerling F, Thünemann A, Heinrich G, Schönhals A (2011) Structure–property relationships of nanocomposites based on polypropylene and layered double hydroxides. Macromolecules 44(11):4342–4354CrossRefGoogle Scholar
  11. 11.
    (a) Yang BX, Pramoda KP, Xu GQ, Goh SH (2007) Mechanical reinforcement of polyethylene using polyethylene-grafted multiwalled carbon nanotubes. Adv Funct Mater 17(13):2062–2069; (b) Xu D, Wang Z (2008) Role of multi-wall carbon nanotube network in composites to crystallization of isotactic polypropylene matrix. Polymer 49(1):330–338Google Scholar
  12. 12.
    (a) Fornes T, Paul D (2003) Crystallization behavior of nylon 6 nanocomposites. Polymer 44(14):3945–3961; (b) Homminga D, Goderis B, Dolbnya I, Reynaers H, Groeninckx G (2005) Crystallization behavior of polymer/montmorillonite nanocomposites. Part I. Intercalated poly (ethylene oxide)/montmorillonite nanocomposites. Polymer 46(25):11359–11365Google Scholar
  13. 13.
    (a) Trujillo M, Arnal M, Müller A, Laredo E, St. Bredeau, Bonduel D, Dubois P (2007) Thermal and morphological characterization of nanocomposites prepared by in-situ polymerization of high-density polyethylene on carbon nanotubes. Macromolecules 40(17):6268–6276; (b) Koval’chuk AA, Shchegolikhin AN, Shevchenko VG, Nedorezova PM, Klyamkina AN, Aladyshev AM (2008) Synthesis and properties of polypropylene/multiwall carbon nanotube composites. Macromolecules 41(9):3149–3156Google Scholar
  14. 14.
    Lei C, Chen D, Wu B, Xu Y, Li S, Huang W (2011) Melt-grafting mechanism study of maleic anhydride onto polypropylene with 1-decene as the second monomer. J Appl Polym Sci 121(6):3724–3732CrossRefGoogle Scholar
  15. 15.
    Babrauskas V, Peacock RD (1992) Heat release rate: the single most important variable in fire hazard. Fire Saf J 18(3):255–272CrossRefGoogle Scholar
  16. 16.
    Wang X, Song L, Yang H, Xing W, Lu H, Hu Y (2012) Cobalt oxide/graphene composite for highly efficient CO oxidation and its application in reducing the fire hazards of aliphatic polyesters. J Mater Chem 22(8):3426–3431CrossRefGoogle Scholar
  17. 17.
    (a) Yang H, Yang CQ, He Q (2009) The bonding of a hydroxy-functional organophosphorus oligomer to nylon fabric using the formaldehyde derivatives of urea and melamine as the bonding agents. Polym Degrad Stab 94(6):1023–1031; (b) He Q, Lu H, Song L, Hu Y, Chen L (2009). Flammability and thermal properties of a novel intumescent flame retardant polypropylene. J Fire Sci 27(4):303–321; (c) Nie S, Hu Y, Song L, He Q, Yang D, Chen H (2008) Synergistic effect between a char forming agent (CFA) and microencapsulated ammonium polyphosphate on the thermal and flame retardant properties of polypropylene. Polym Adv Technol 19(8):1077–1083Google Scholar
  18. 18.
    (a) He Q, Song L, Hu Y, Zhou S (2009) Synergistic effects of polyhedral oligomeric silsesquioxane (POSS) and oligomeric bisphenyl A bis(diphenyl phosphate)(BDP) on thermal and flame retardant properties of polycarbonate. J Mater Sci 44(5):1308–1316; (b) Zhang W, Li X, Guo X, Yang R (2010) Mechanical and thermal properties and flame retardancy of phosphorus-containing polyhedral oligomeric silsesquioxane (DOPO-POSS)/polycarbonate composites. Polym Degrad Stab 95(12):2541–2546Google Scholar
  19. 19.
    Beyler C, Hirschler M (1995) Thermal decomposition of polymers, chapter 7. In: SFPE handbook of fire protection engineering. National Fire Protection Association, and Society of Fire Protection Engineers, Boston, Massachusetts, pp 110–131Google Scholar
  20. 20.
    Singh B, Sharma N (2008) Mechanistic implications of plastic degradation. Polym Degrad Stab 93(3):561–584CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Qingliang He
    • 1
  • Xingru Yan
    • 1
  • Jiang Guo
    • 1
  • Xi Zhang
    • 2
  • Huige Wei
    • 2
  • Dawei Jiang
    • 2
  • Xin Wei
    • 3
  • Daowei Ding
    • 3
  • Suying Wei
    • 2
    • 3
  • Evan K. Wujcik
    • 3
  • John Zhanhu Guo
    • 1
    • 4
  1. 1.Integrated Composites Laboratory (ICL), Department of Chemical and Biomolecular EngineeringUniversity of TennesseeKnoxvilleUSA
  2. 2.Department of Chemistry and BiochemistryLamar UniversityBeaumontUSA
  3. 3.Dan F. Smith Department of Chemical EngineeringLamar UniversityBeaumontUSA
  4. 4.Chemical and Biomolecular Engineering DepartmentUniversity of TennesseeKnoxvilleUSA

Personalised recommendations