Can We Predict Your Sentiments by Listening to Your Peers?

  • Julia Neidhardt
  • Nataliia Rümmele
  • Hannes Werthner
Conference paper

Abstract

Web sources of tourism services provide valuable resources of knowledge not only for the travellers but also for the companies. Tourism operators are increasingly aware that user related data should be regarded as an important asset. In this paper, user activities and interactions in the tourism domain are analysed. In particular, the emotions of the users regarding their forthcoming trips are studied with the objective to characterize interdependencies between them. Social network analysis is applied to characterize the interactions between the users. To capture their emotions, text mining techniques and sentiment analysis are applied to construct a measure, which is based on free-text comments in a travel forum. The experimental outcome provides some evidence that social influence between the users in the network exists.

Keywords

Social Network Analysis Social Influence Sentiment Analysis Travel Forum 

References

  1. Baccianella, S., Esuli, A., & Sebastiani, F. (2010). SentiWordNet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. LREC, 10, 2200–2204.Google Scholar
  2. Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python. California: O’Reilly.Google Scholar
  3. Chmiel, A., Sobkowicz, P., Sienkiewicz, J., Paltoglou, G., Buckley, K., Thelwall, M., et al. (2011). Negative emotions boost user activity at BBC forum. Physica A: Statistical mechanics and its applications, 390(16), 2936–2944.CrossRefGoogle Scholar
  4. Daraganova, G., & Robins, G. (2013). Autologistic actor attribute models. In D. Lusher, J. Koskinen, & G. Robins (Eds.), Exponential random graph models for social networks: Theory, methods and applications (pp. 102–114). Cambridge: Cambridge University Press.Google Scholar
  5. Doreian, P. (1989). Models of network effects on social actors. In Research methods in social network analysis (pp. 295–317). Fairfax: George Mason University Press.Google Scholar
  6. Esuli, A., & Sebastiani, F. (2006). Sentiwordnet: A publicly available lexical resource for opinion mining. In Proceedings of LREC (Vol. 6, pp. 417–422).Google Scholar
  7. Fan, R., Zhao, J., Chen, Y., & Xu, K. (2014). Anger is more influential than joy: Sentiment correlation in Weibo. PLoS ONE, 9(10), e110184.CrossRefGoogle Scholar
  8. Garcia, A., Gaines, S., & Linaza, M. T. (2012). A lexicon based sentiment analysis retrieval system for tourism domain. e-Review of Tourism Research (eRTR), 10, 35–38.Google Scholar
  9. Gräbner, D., Zanker, M., Fliedl, G., & Fuchs, M. (2012). Classification of customer reviews based on sentiment analysis. In Information and communication technologies in tourism (pp. 460–470). Vienna, New York: Springer.Google Scholar
  10. Kempe, D., Kleinberg, J., & Tardos, É. (2003). Maximizing the spread of influence through a social network. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 137–146). New York: ACM.CrossRefGoogle Scholar
  11. Költringer, C., & Dickinger, A. (2015). Analyzing destination branding and image from online sources: A web content mining approach. Journal of Business Research, 68(9), 1836–1843.CrossRefGoogle Scholar
  12. Leenders, R. T. A. J. (1997). Longitudinal behavior of network structure and actor attributes: Modeling interdependence of contagion and selection. In Evolution of social networks (pp. 165–184). London: Routledge.Google Scholar
  13. Leenders, R. T. A. J. (2002). Modeling social influence through network autocorrelation: Constructing the weight matrix. Social Networks, 24(1), 21–47.CrossRefGoogle Scholar
  14. Miller, M., Sathi, C., Wiesenthal, D., Leskovec, J., & Potts, C. (2011). Sentiment flow through hyperlink networks. In ICWSM.Google Scholar
  15. Neidhardt, J., Pobiedina, N., & Werthner, H. (2015). What can we learn from review data? e-Review of Tourism Research (eRTR). In ENTER 2015 (Vol. 6).Google Scholar
  16. Schmunk, S., Höpken, W., Fuchs, M., & Lexhagen, M. (2013). Sentiment analysis: Extracting decision-relevant knowledge from UGC. In Information and Communication Technologies in Tourism 2014 (pp. 253–265).Google Scholar
  17. Steglich, C., Snijders, T. A., & Pearson, M. (2010). Dynamic networks and behavior: Separating selection from influence. Sociological methodology, 40(1), 329–393.CrossRefGoogle Scholar
  18. Sun, J., & Tang, J. (2011). A survey of models and algorithms for social influence analysis. In Social network data analytics (pp. 177–214). New York: Springer.CrossRefGoogle Scholar
  19. Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-based methods for sentiment analysis. Computational linguistics, 37(2), 267–307.CrossRefGoogle Scholar
  20. Werthner, H., Alzua-Sorzabal, A., Cantoni, L., Dickinger, A., Gretzel, U., Jannach, D., et al. (2015). Future research issues in IT and tourism. Information Technology & Tourism, 15(1), 1–15.CrossRefGoogle Scholar
  21. Zhang, J., Ackerman, M. S., & Adamic, L. (2007). Expertise networks in online communities: structure and algorithms. In Proceedings of the 16th WWW Conference. New York: ACM.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Julia Neidhardt
    • 1
  • Nataliia Rümmele
    • 1
  • Hannes Werthner
    • 1
  1. 1.E-Commerce GroupTechnische Universität WienWienAustria

Personalised recommendations