Insect Trace Fossils in Other Substrates than Paleosols I. Plant Remains

  • Jorge Fernando Genise
Part of the Topics in Geobiology book series (TGBI, volume 37)


Chapters on insect trace fossils in other substrates are included in the book to provide a very concentrated, but no comprehensive, overview on the whole universe of insect trace fossils, particularly interesting for entomologists. Insect trace fossils are very in common in plant remains. Traces in wood have been described since the second half of the nineteenth century and involve mostly borings of xylophagous groups of insects, such as cerambicids, buprestids, scolytids, carpenter bees and termites. Described ichnogenera, revised herein, include Paleobuprestis, Paleoscolytus, Paleoipidius, Xylokrypta, Anobichnium, Asthenopodichnium, Xylonichnus, Stipitichnus, Cycalichnus, Dekosichnus, Pecinolites and Linckichnus among others. The big picture of insect trace fossils in wood shows a lot of brief descriptions scattered in the literature, a few ichnotaxa described, which in many cases are not compared with each other, and the lack of the standardized set of ichnotaxobases to erect new ichnotaxa. Traces in fossil leaves are more numerous and its ichnotaxonomical scenario very complicated. Mostly, these traces are grouped in functional feeding groups, including excisions (marginal, non-marginal, window and skeletonizations), galls, mines and incisions (piercing and sucking and ovipositions). Extant and fossil examples of these functional groups are briefly revised, mostly dealing with the best defined ichnotaxa representing them. Some of these ichnogenera are: Phagophytichnus, Folifenestra, Paleoovoidus, Paleogallus, and Fenusa among others. Stems, petioles, seeds, pollen, spores and fruits also show insect trace fossils, which are briefly reviewed in this chapter, including ichnogenera such as Carporichnus, Lamniporichnus, Acrobulbillites, and Petiolocecidium among others. Color plates of extant and fossil traces and their producers are provided.


Insect trace fossils in plant remains Wood Leaves Fruits Borings Functional feeding groups Excisions Galls Mines Incisions Ichnotaxonomy 


  1. Abel O (1933) Ein fossil Termitennest aus dem Unterpliozän des Wiener Beckens. Verh Zool Bot Ges Wien 83:38–39Google Scholar
  2. Adamis-Rodrigues K, Ianuzzi R, Pinto IA (2004) Permian plant-insect interactions from a Gondwana flora of southern Brazil. Fossils Strata 51:106–125Google Scholar
  3. Bae YJ, McCafferty WP (1995) Ephemeroptera tusks and their evolution. In: Corkum LD, Abrowski JJH (eds) Current directions in research on ephemeroptera. Canadian Scholar’s Press, Toronto, pp 377–405Google Scholar
  4. Banks HP (1981) Peridermal activity (wound repair) in an Early Devonian (Emsian) trimerophyte from Gaspé Peninsula, Canada. Paleobotanist 28–29:20–25Google Scholar
  5. Banks HP, Colthart BJ (1993) Plant-animal-fungal interactions in Early Devonian trimerophytes from Gaspé, Canada. Am J Bot 80:992–1001CrossRefGoogle Scholar
  6. Beck AL, Labandeira CC (1998) Early Permian insect folivory on gigantopterid-dominated riparian flora from north-central Texas. Palaeogeogr Palaeoclimatol Palaeoecol 142:139–173CrossRefGoogle Scholar
  7. Bernays EA, Chapman RF (1970) Food selection by Chorthippus parallelus (Orthoptera: Acrididae) in the field. J Anim Ecol 39:383–394CrossRefGoogle Scholar
  8. Bernays EA, Jarzembowski EA, Malcolm SB (1991) Evolution of insect morphology in relation to plants. Philos Trans Biol Sci 333:257–264CrossRefGoogle Scholar
  9. Bertling M, Braddy S, Bromley RG, Demathieu G, Genise JF, Mikulás R, Nielsen JK, Nielsen KSS, Rindsberg A, Schlirf M, Uchman A (2006) Names for trace fossils: a uniform approach. Lethaia 39:265–286CrossRefGoogle Scholar
  10. Béthoux O, Galtier J, Nel A (2004) Earliest evidence of insect endophytic oviposition. Palaios 19:408–413CrossRefGoogle Scholar
  11. Blair KG (1943) Scolytidae (Coleoptera) from the Wealden Formation. Entomol Mon Mag 79:59–60Google Scholar
  12. Boucot AJ (1990) Evolutionary paleobiology of behavior and coevolution. Elsevier, AmsterdamGoogle Scholar
  13. Bromley RG (1990) Trace fossils. Unwin Hyman, LondonGoogle Scholar
  14. Bromley RG, Buatois LA, Genise JF, Labandeira CC, Mángano MG, Melchor RN, Schlirf M, Uchman A (2007) Comments on the paper “Reconnaissance of Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain Region, USA: Paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrial and freshwater ichnocoenoses” by Stephen T. Hasiotis. Sediment Geol 200:141–150CrossRefGoogle Scholar
  15. Brongniart C (1876) Perforations observées dans deux morceaux de bois fossile. Ann Soc Entomol Fr 7:215–220Google Scholar
  16. Brooks HK (1955) Healed wound and galls on fossil leaves from the Wilcox deposits (Eocene) of Western Tennessee. Psyche 62:1–9CrossRefGoogle Scholar
  17. Brues C (1936) Evidences of insect activity preserved in fossil wood. J Paleontol 10:637–643Google Scholar
  18. Chaloner WG, MacDonald P (1980) Plants invade the land. HMSO, EdimburgGoogle Scholar
  19. Chaloner WG, Scott AC, Stephenson J (1991) Fossil evidence for plant-arthropod interactions in the Palaeozoic and Mesozoic. Philos Trans R Soc Lond B 333:177–186CrossRefGoogle Scholar
  20. Choong MF (1996) Whats makes a leaf tough and how this affects the pattern of Catanopsis fissa leaf consumption by caterpillars. Funct Ecol 10:668–674CrossRefGoogle Scholar
  21. Cichan MA, Taylor TN (1982) Wood-borings in Premnoxylon: plant-animal interactions in the Carboniferous. Palaeogeogr Palaeoclimatol Palaeoecol 39:123–127CrossRefGoogle Scholar
  22. Cockerell TDA (1908) Fossil insect from Florissant, Colorado. Bull Am Mus Nat Hist 24:59–69Google Scholar
  23. Colin JP, Néraudeau D, Nel A, Perrichot V (2011) Termite coprolites (Insecta: Isoptera) from the Cretaceous of western France: a palaeoecological insight. Rev Micropaleontol 54:129–139CrossRefGoogle Scholar
  24. Connor EF, Taverner MP (1997) The evolution and adaptative significance of leaf-mining habit. Oikos 79:6–25CrossRefGoogle Scholar
  25. Crane PR, Jarzembowski EA (1980) Insect leaf mines from the Palaeocene of southern England. J Nat Hist 14:629–636CrossRefGoogle Scholar
  26. Diéguez C, Nieves-Aldrey JL, Barrón E (1996) Fossil galls (zoocecids) from the Upper Miocene of La Cerdaña (Lérida, Spain). Rev Paleobot Palynol 94:329–343CrossRefGoogle Scholar
  27. Dreger-Jauffret F, Shorthouse JD (1992) Diversity of gall-inducing insects and their galls. In: Shorthouse JD, Rohfrtsch O (eds) Biology of insect-induced galls. Oxford University Press, Oxford, pp 9–33Google Scholar
  28. Edwards PJ, Wratten SD (1980) Ecology of insect-plant interactions. Edward Arnold, LondonGoogle Scholar
  29. Engel MS (2001) A monograph of the Baltic bees and evolution of the Apoidea (Hymenoptera). Bull Am Mus Nat Hist 259:1–192CrossRefGoogle Scholar
  30. Fossa-Mancini E (1941) Los bosques petrificados de la Argentina según E. Riggs y G Wieland. Notas Mus La Plata Geol 6:59–92Google Scholar
  31. Francis JE, Harland BM (2006) Termite borings in Early Cretaceous fossil wood, Isle of Wight, UK. Cretac Res 27:773–777CrossRefGoogle Scholar
  32. Freess WB (1991) Beiträge zur Kenntniss von Fauna and Flora des marinen Mitteloligozäns bei Leipzig. Altenburg Naturwiss Forsch 6:3–74Google Scholar
  33. Freidberg A (1984) Gall Tephritidae (Diptera). In: Ananthakrishnan TN (ed) Biology of gall insects. Edward Arnorld, London, pp 129–167Google Scholar
  34. Friĉ A (1901) Studien im Gebiete der Böhmischen Kreideformation. Palaentolologische Untersuchungen der einselnen Schichten. Die thierischen Reste der Perucer Schichten. Arch Naturwiss Land Böhmen 9:163–181Google Scholar
  35. Gangwere SK (1966) Relationships between the mandibles, feeding behavior, and damages inflicted on plants by the feeding of certain acridids (Orthoptera). Michigan Entomol 1:13–16Google Scholar
  36. García Massini JL, Falaschi P, Zamuner AB (2012) Fungal-arthropod-plant interactions from the Jurassic petrified forest Monumento Natural Bosques Petrificados, Patagonia, Argentina. Palaeogeogr Palaeoclimatol Palaeoecol 329–330:37–46CrossRefGoogle Scholar
  37. García-Robledo C, Staines CL (2008) Herbivory in gingers from latest Cretaceous to present: is the ichnogenus Cephaloleichnites (Hispinae, Coleoptera) a rolled-leaf beetle?. J Paleont 82: 1035–1037Google Scholar
  38. Geinitz HB (1839) Charakteristik der schichten und Petrefacten des sachsischen Kreidegebirges I. Der Tunnel bei Oberau. Arnoldischen Buchhandlung, Dresden-LeipzigGoogle Scholar
  39. Geinitz HB (1855) Die Versteinerungen der Steinkohlenformation in Sachsen. Verlag W. Engelmann, LeipzigGoogle Scholar
  40. von Gellehorn O (1894) Insektenfrass in der Braunkohle der Mark Brandenburg. Königl Preuss Geol Landensant Bergakademie B 14:49–53Google Scholar
  41. Genise JF (1995a) Upper Cretaceous trace fossils in permineralized plant remains from Patagonian Argentina. Ichnos 3:287–299CrossRefGoogle Scholar
  42. Genise JF (2000) The ichnofamily Celliformidae for Celliforma and allied ichnogenera. Ichnos 7:267–282CrossRefGoogle Scholar
  43. Genise JF (2004b) Ichnotaxonomy and ichnostratigraphy of chambered trace fossils in palaeosols attributed to coleopterans, termites and ants. In: McIlroy D (ed) The application of ichnology to palaeoenvironmental and stratigraphic analysis. Geol Soc Lond Spec Publ 228:419–453Google Scholar
  44. Genise JF, Hazeldine PL (1995) A new insect trace fossil in Jurassic wood from Patagonian Argentina. Ichnos 4:1–5CrossRefGoogle Scholar
  45. Genise JF, Garrouste R, Nel P, Grandcolas P, Maurizot P, Cluzel D, Cornette R, Fabre AC, Nel A (2012) Asthenopodichnium in fossil wood: different trace makers as indicators of different terrestrial palaeoenvironments. Palaeogeogr Palaeoclimatol Palaeoecol 365–366:184–191CrossRefGoogle Scholar
  46. Givulescu R (1981) Pathological elements on fossil leaves from Chiuzbaia (galls, mines, and other insect traces). D S Inst Geol Geof 68:123–133Google Scholar
  47. Gnaedinger SC, Adami-Rodrigues K, Gallego OF (2014) Endophytic oviposition on leaves from the Late Triassic of northern Chile: Ichnotaxonomic, palaeobiogeographic and palaeoenvironment considerations. Geobios 47:221–236CrossRefGoogle Scholar
  48. Gregory I (1968) The fossil woods near Holley in the Sweet Home petrified forest, Linn County, Oregon. State of Oregon Deptartament of Geology and Mineral Industries. Ore Bin 30:57–76Google Scholar
  49. Gregory I (1969) Worm-bored poplar from the Eocene of Oregon.State of Oregon Departament of Geology and Mineral Industries. Ore Bin 31:184–185Google Scholar
  50. Grimaldi DA (1999) The co-radiations of pollinating insects and angiosperms in the Cretaceous. Ann Mo Bot Gard 86:373–406CrossRefGoogle Scholar
  51. Guo S (1991) A Miocene trace fossil of insect from Shanwang Formation in Linqu, Shandong. Acta Paleontol Sin 30:739–742Google Scholar
  52. Handlirsch A (1908) Die fossilen Insekten und die Phylogenie der rezenten Formen, vol 1. Wilhelm Engelmann, LeipizigGoogle Scholar
  53. Hasiotis ST (1997) Abuzz before flowers. Plateau J Museum Northern Arizona 1:20–27Google Scholar
  54. Hasiotis ST (2003) Complex ichnofossils of solitary to social soil organisms: understanding their evolution and roles in terrestrial paleoecosystems. Palaeogeogr Palaeoclimatol Palaeoecol 192:259–320CrossRefGoogle Scholar
  55. Hasiotis ST (2004) Reconnaissance of Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain Region, USA: paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrial and freshwater ichnocoenoses. Sediment Geol 167:177–268CrossRefGoogle Scholar
  56. Hasiotis ST, Dubiel RF (1993b) Continental trace fossils of the Upper Triassic Chinle Formation, Petrified Forest National Park, Arizona. New Mexico Mus Nat Hist Bull 3:175–178Google Scholar
  57. Hasiotis ST, Dubiel RF, Demko TM (1995) Triassic hymenopterous nests: insect eusociality predates angiosperm plants. Geol Soc Am Abstr Prog 27:13Google Scholar
  58. Hasiotis ST, Bown TM, Kay PT, Dubiel RF, Demko TM (1996) The ichnofossil record of hymenopteran nesting behavior from Mesozoic and Cenozoic pedogenic and xylic substrates: Example of relative stasis. In: Abstracts of the North America paleontological convention, Washington DC, p 165Google Scholar
  59. Hasiotis ST, Dubiel RF, Kay PT, Demko TM, Kowalska K, McDaniel D (1998a) Research update on hymenopteran nests and cocoons, Upper Triassic Chinle Formation, Petrified Forest National Park, Arizona. In: Santucci VL, McClelland L (eds) National Park Service paleontological research—technical report NPS/NRGRD/GRDTR-98/01, pp 116–121Google Scholar
  60. Heer O (1868) Flora fossilis artica. Die fossile Flora der Polarlander. Schulthess, ZurichCrossRefGoogle Scholar
  61. Hellmund M, Hellmund W (2002) Erster nachweis von Kleinlibellen-eilogen (Insecta, Zygoptera, Lestidae) in der mitteleozänen braunkohle des ehemaligen tagebaues Mücheln, baufeld neumark-nord (Geiseltal, Sachsen-Anhalt, Deutschland). Hallesches Jahrbuch der Geowissenchaften 24:47–55Google Scholar
  62. Hering EM (1930) Eine Agromyziden-mine aus dem Tertiär (Dipt. Agromyz.). Ber Ent Zeit Dtsch Entomol Z 1:63–64Google Scholar
  63. Hering EM (1951) Biology of the leaf miners. W. Junk, The HagueCrossRefGoogle Scholar
  64. Herzer H (1893) A new fungus from the Coal Measures. Am Geol 11:365–366Google Scholar
  65. Heyden CH (1856) Reste von Insekten aus der Braunkohle von Salzhausen und Westerburg. Palaentographica 4:198–201Google Scholar
  66. Holden AR, Harris JM (2013) Late Pleistocene coleopteran galleries in wood from La Brea tar pits: colonization of Juniper by Phloeosinus Chapuis (Curculionidae: Scolytinae) and Buprestidae. Coleopt Bull 67:155–160CrossRefGoogle Scholar
  67. Hollick A (1906) Insect borings in Cretaceous Lignite from Kreischerville. Proc Staten Island Assoc Arts Sci 1:23–24Google Scholar
  68. Ianuzzi R, Labandeira CC (2008) The oldest record of external foliar feeding and the expansión of insect folivory on land. Ann Entomol Soc Am 101:79–94CrossRefGoogle Scholar
  69. Jarzembowski EA (1989) Taxonomy of insect leaf mines from the English Palaeocene. Proc Geol Assoc 100:448–449Google Scholar
  70. Jarzembowski EA (1990) A boring beetle from the Wealden of The Weald. In: Boucot J (ed) Evolutionary paleobiology of behavior and coevolution. Elsevier, Amsterdam, pp 373–376Google Scholar
  71. Jurasky KA (1932) Frassgänge und Koprolithen eines Nagekäfers in liassicher Steinkohle. Deustch Geol Gesell B 84:656–657Google Scholar
  72. Kernbach K (1967) Über die bischer im Pliozän von Willershausen gefundenen Schmetterlings Raupenreste. Ber Naturhist Ges Hannover 111:103–108Google Scholar
  73. Kevan PG, Chaloner WG, Savile DBO (1975) Interrelationship of early terrestrial arthropod and plants. Palaeontology 18:391–417Google Scholar
  74. Kidston R, Lang WH (1921) On Old Red Sandstone plants showing structure, from the Rhynie Chert Bed, Aberdeenshire. Part IV. Restorations of vascular cryptogams, and discussion of their bearing on the general morphology of the Pteridophyta and the origin of the organisation of land-plants. Trans R Soc Edinburgh 52:831–854CrossRefGoogle Scholar
  75. Kierst J, Wiesner J (1975) Fossile frasspuren an einer Conifere aus dem Dogger in Wolfsburg. Der Aufschluss 26:255–256Google Scholar
  76. Kluge NY (2004) The Phylogenetic System of Ephemeroptera. Kluwer, DordrechtCrossRefGoogle Scholar
  77. Kozlov MV (1988) Paleontology of lepidopterans and problems in the phylogeny of the order Papilionida. In: Ponomarenko AG (ed) The Mesozoic-Cenozoic crisis in the evolution of insects. Academy of Sciences, Moscow, pp 16–69Google Scholar
  78. Krassilov VA (2007) Mines and galls on fossil leaves from the Late Cretaceous (Turonian) of the southern Negev, Israel. Isr J Plant Sci 53:57–66Google Scholar
  79. Krassilov VA, Levi Z, Nevo E (2004) Syngenesis and macroevolution in mangrove communities from cretaceous deposits of the Negev desert (Israel). Paleontol Inst Ross Akad Nauk Moscow 6:23–39Google Scholar
  80. Krassilov VA, Silantieva N, Lewy Z (2008) Traumas of fossil leaves from the Cretaceous of Israel. In: Krassilov VA, Rasnitsyn A (eds) Plant-arthropod interactions in the early angiosperm history. Pensoft, Sofia-Moscow, pp 9–187CrossRefGoogle Scholar
  81. von Kušta J (1880) Bohrgänge von Insekten in einen verkieselten Araucarite von Bránov bei Pürglitz. Sitzungsber K Böhmisch Gesel Wiss Math Naturwiss Cl 1880:202–203Google Scholar
  82. Laass M, Hoff C (2015) The earliest evidence of damselfly-like endophytic oviposition in the fossil record. Lethaia 48:115–124CrossRefGoogle Scholar
  83. Labandeira CC (1998a) Early history of arthropod and vascular plant associations. Annu Rev Earth Planet Sci 26:329–377CrossRefGoogle Scholar
  84. Labandeira CC (2002b) The history of associations between plants and animals. In: Herrera CM, Pellmyr O (eds) Plant-animal interactions: an evolutionary approach. Blackwell Science, London, pp 26–74Google Scholar
  85. Labandeira CC (2006a) Silurian to Triassic plant and hexapod clades and their associations: new data, a review, and interpretations. Arthropod Syst Phylogeny 64:53–94Google Scholar
  86. Labandeira CC (2006b) The four phases of plant–arthropod associations in deep time. Geol Acta 4:409–438Google Scholar
  87. Labandeira CC (2007) The origin of herbivory on land: initial patterns of plant tissue consumption by arthropods. Insect Sci 14:259–275CrossRefGoogle Scholar
  88. Labandeira CC (2012) Evidence for outbreaks from the fossil record of insect herbivory. In: Barbosa P, Letorneau D, Agrawal A (eds) Insect outbreaks revisited. Blackwell, Oxford, pp 269–290Google Scholar
  89. Labandeira CC (2013) Deep-time patterns of tissue consumption by terrestrial arthropod herbivores. Naturwissenschaften 100:355–364CrossRefGoogle Scholar
  90. Labandeira CC, Allen EG (2007) Minimal insect herbivory for the Lower the Lower Permian Coprolite Bon Bed site of north-central Texas, USA, and comparison to the other Late Paleozoic floras. Palaeogeogr Palaeoclimatol Palaeoecol 247:197–219CrossRefGoogle Scholar
  91. Labandeira CC, Beall BS (1990) Arthropod terrestriality. In: Culver SJ (ed) Short courses in paleontology, vol 3. University of Tennessee Press, Knoxville, pp 214–216Google Scholar
  92. Labandeira CC, Dilcher DL (1993) Insect functional feeding groups from the mid-Cretaceous Dakota Formation of Kansas and Nebraska: evidence for early radiation of herbivores and angiosperms. Geol Soc Am Abstr Programs 25:390Google Scholar
  93. Labandeira CC, Phillips TL (1996a) Insect fluid-feeding on Upper Pennsylvanian tree fern (Paleodictyoptera, Marattiales) and the early history of the piercing and sucking functional feeding group. Ann Entomol Soc Am 89:157–183CrossRefGoogle Scholar
  94. Labandeira CC, Phillips TL (1996b) A carboniferous insect gall: insight into early ecologic history of the holometabola. Proc Natl Acad Sci U S A 93:8470–8474CrossRefGoogle Scholar
  95. Labandeira CC, Phillips TL (2002) Stem borings and petiole galls from Pennsylvanian tree ferns of Illinois, USA: implications for the origin of the borer and galler functional-feeding-groups and holometabolous insects. Palaeontographica 264:1–100Google Scholar
  96. Labandeira CC, Dilcher DL, Davis DR, Wagner DR (1994) Ninety-seven million years of angiosperm-insect association: paleobiological insights into the meaning of coevolution. Proc Natl Acad Sci U S A 91:12278–12282CrossRefGoogle Scholar
  97. Labandeira CC, Nufio C, Wing S, Davis D (1995) Insect feeding strategies from the Late Cretaceous Big Cedar Ridge flora: comparing the diversity and intensity of Mesozoic herbivory with the present. Geol Soc Am Abst Programs 27:447Google Scholar
  98. Labandeira CC, LePage BA, Johnson AH (2001) A Dendroctonus bark engraving (Coleoptera: Scolytidae) from a middle Eocene Larix (Coniferales:Pinaceae): early or delayed colonization? Am J Bot 88:2026–2039CrossRefGoogle Scholar
  99. Labandeira CC, Johnson KR, Lang P (2002) Preliminary assessment of insect herbivory across the Cretaceous-Tertiary boundary: major extinction and minimum rebound. In: Hartman JH, Johnson KR, Nichols DJ (eds) The Hell Creek Formation of the northern Great Plains, Boulder, Colorado. Geol Soc Am Spec Paper, vol 361, p 297–327Google Scholar
  100. Labandeira CC, Wilf P, Johnson KR, Marsh F (2007) Guide to insect (and other) damage types on compressed plant fossils. Version 3.0. Smithsonian Institution, Washington, DCGoogle Scholar
  101. Lang PJ, Scott AC, Stephenson J (1995) Evidence of plant-arthropod interactions from the Eocene Branksome Sand Formation, Bournemouth, England: introduction and description of leaf mines. Tertiary Res 15:145–174Google Scholar
  102. Lesquereux L (1877) A new species of fungus recently discovered in the shales of the Darlington Coal Bed (Lower Productive Coal Measures, Alleghany River Series) at Cannelton, in Beaver County, Pennsylvania. Proc Am Phil Soc 17:173–175Google Scholar
  103. Lesquereux L (1892) The flora of the Dakota Group. Monogr U S Geol Surv 17:1–400Google Scholar
  104. Linck O (1949) Fossile bohrgänge an einen Keuperholz. Neues Jahr Min Geol Palaeont B 4–6:180–185Google Scholar
  105. Lovendal EA (1898) De Danske Barkbiller. Scolytidae et Platypodidae Danicae. KjobenhavnGoogle Scholar
  106. Lucas SG, Minter NJ, Hunt AP (2010) Re-evaluation of alleged bees’ nests from the Upper Triassic of Arizona. Palaeogeogr Palaeoclimatol Palaeoecol 286:194–201CrossRefGoogle Scholar
  107. Mani MS (1964) The ecology of plant galls. Junk, The HagueCrossRefGoogle Scholar
  108. Marty P (1894) De l’a ancienneté de la “Cecidomyia fagi”. Feuilles Jeunes Nat 24:173Google Scholar
  109. McLoughlin S (2011) New records of leaf galls and arthropod oviposition scars in Permian–Triassic Gondwanan gymnosperms. Aust J Bot 59:156–169CrossRefGoogle Scholar
  110. Mikuláš R (1999) Notes to the concept of plant trace fossils related to plant-generated sedimentary structures. Bull Geoci Czech Geol Surv 74:39–42Google Scholar
  111. Mikuláš R, Dvořák Z (2002) Borings in xylic tissues of the tree fern Tempskya in the Bohemian Cretaceous Basin, Czech Republic. Zprávy Geol Výzkumech 2002:129–131Google Scholar
  112. Mikuláš R, Pek I (1999) Trace fossils of animal plant interactions and “pseudointeractions” from Maletin (Bohemian Cretaceous Basin, Czech Republic). Ichnos 6:219–228CrossRefGoogle Scholar
  113. Mikuláš R, Dvořák Z, Pek I (1998) Lamniporichnus vulgaris igen. et isp. nov: traces of insect larvae in stone fruits of hackberry (Celtis) from the Miocene and Pleistocene of the Czech Republic. J Czech Geol Soc 43:277–280Google Scholar
  114. Möhn E (1960) Eine neue Gallmucke aus der niederrheinischen Braunkohle, Sequoiomyia krauseli n. g. sp. (Diptera, Itonididae). Senckenberg Lethaea 41:513–522Google Scholar
  115. Moisan P, Labandeira CC, Matushkina NA, Wappler T, Voigt S, Kerp H (2012) Lycopsid-arthropod associations and odonapteran oviposition on Triassic herbaceous Isoetites. Palaeogeogr Palaeoclimatol Palaeoecol 344–345:6–15CrossRefGoogle Scholar
  116. Moran K, Hilbert-Wolf HL, Golder K, Malenda HF, Smith CJ, Storm LP, Simpson EL, Wizevich MC, Tindall SE (2010) Attributes of the wood-boring trace fossil Asthenopodichnium in the Late Cretaceous Wahweap Formation, Utah, USA. Palaeogeogr Palaeoclimatol Palaeoecol 297:662–669CrossRefGoogle Scholar
  117. Nel A (1994) Traces d’activités d’insectes dans de bois et fruits fossiles de la formation de Nkondo (Mio-Pliocène du Rift Occidental, Ouganda). In: Geology and palaeobiology of the Albertine Rift Valley, Uganda-Zaire. Palaeobiology, vol II. CIFEG Occasional Publications, Orleans, France, pp 47–57Google Scholar
  118. Patanakamjorn S, Pathak MD (1967) Varietal resistance of rice to the assiatic rice borer, Chilo supressalis (Lepidoptera: Crambidae) and its association with various plant characters. Ann Entomol Soc Am 60:287–292CrossRefGoogle Scholar
  119. Peña L (1971) Evidencias de insectos en maderas petrificadas halladas en lugares adyacentes al Estrecho de Magallanes. An Mus Hist Nat Valparaíso 4:345–348Google Scholar
  120. Petrulevičius JR, Wappler T, Nel A, Just J (2011) The diversity of Odonata and their endophytic ovipositions from the Upper Oligocene fossillagerstätte of Rott (Rhineland, Germany). Zookeys 130:67–89CrossRefGoogle Scholar
  121. Pieńkowski G, Niedźwiedzki G (2009) Invertebrate trace fossil assemblages from the Lower Hettangian of Sołtyków, Holy Cross Mountains, Poland. Volunina Jurassica 6:109–131Google Scholar
  122. Pires EF, Sommer MG (2009) Plant-arthropod interaction in the Early Cretaceous (Berriasian) of the Araripe Basin, Brazil. J South Am Earth Sci 27:50–59CrossRefGoogle Scholar
  123. Pollard DG (1973) Plant penetration by feeding aphids (Hemiptera, Aphidoidea): a review. Bull Entomol Res 62:631–714CrossRefGoogle Scholar
  124. Ponzi G (1876) I fossili del Monte Vaticano. Acad Naz Linzei, Atti 3:925–959Google Scholar
  125. Prevec R, Labandeira CC, Neveling J, Gastaldo RA, Looy C, Bamford M (2009) Portrait of a Gondwanan ecosystem: A new Late Permian fossil locality from KwaZulu-Natal, South Africa. Rev Palaeobot Palynol 156:454–493CrossRefGoogle Scholar
  126. Rajchel J, Uchman A (1998) Insect borings in Oligocene wood, Kliwa Sandstones, outer Carpathians, Poland. Ann Soc Geol Polon 68:219–224Google Scholar
  127. Raupp MJ (1985) Effects of leaf toughness on mandibular wear of the leaf beetle, Plagiodera versicolora. Ecol Entomol 10:73–79CrossRefGoogle Scholar
  128. Rittinger PA, Biggs AR, Peirson DR (1987) Histochemistry of lignin and suberin deposition in boundary layers formed after wounding in various plant species and organs. Can J Bot 65:1886–1892CrossRefGoogle Scholar
  129. Rogers AF (1928) Natural history of the silica in minerals. Am Miner 3:73–92Google Scholar
  130. Rogers AF (1938) Fossil termite pellets in opalized wood from Santa María, California. Am J Sci 36:389–392CrossRefGoogle Scholar
  131. Rohr DM, Boucot AJ, Miller J, Abbott M (1986) Oldest termite nest from the Upper Cretaceous of West Texas. Geology 14:87–88CrossRefGoogle Scholar
  132. Roselt G (1954) Ein neuer Schachtelhalm aus dem Keuper und Beiträge zur Kenntnis von Neocalamites meriani Brongn. Geologie 3:617–643Google Scholar
  133. Ross DA (1932) Practicum der Gallenkunde. Springer, BerlinGoogle Scholar
  134. Rothwell GW, Scott AC (1983) Coprolites within the marattiaceous fern stems (Psaronius magnificus) from the Upper Pennsylvanian of the Appalachian Basin, USA. Palaeogeogr Palaeoclimatol Palaeoecol 41:227–232CrossRefGoogle Scholar
  135. Rouchy P (1875) Découvertes de perforations de larvas fossiles. Petites Nouvelles Entomol 1:551Google Scholar
  136. Rozefelds AC, Sobbe I (1987) Problematic insect leaf mines from the Upper Triassic Ipswich Coal Measures of southeastern Queensland, Australia. Alcheringa 11:51–57CrossRefGoogle Scholar
  137. Sarzetti LC (2010) Análisis icnológico de las asociaciones planta insecto de la Tafoflora de Río Pichileufú (Eoceno Medio), Río Negro. Tesis Doctoral Universidad Nacional de Tucuman, ArgentinaGoogle Scholar
  138. Sarzetti LC, Labandeira CC, Genise JF (2008) A leaf-cutter bee trace fossil from the Eocene of Patagonia, Argentina and a review of megachilid (Hymenoptera) ichnology. Palaeontology 51:933–941CrossRefGoogle Scholar
  139. Sarzetti LC, Labandeira CC, Muzón J, Wilf P, Cúneo R, Johnson K, Genise JF (2009) Odonatan endophytic oviposition from the Eocene of Patagonia: the ichnogenus Paleoovoidus and implications for behavioral stasis. J Paleontol 83:431–447CrossRefGoogle Scholar
  140. Schenk E (1937) Insektenfrassgänge oder Bohrlöcher von Pholadiden in Ligniten aus dem Braunkohlenflora bei Köln. Neues Jahr Min Geol Palaeont 77:392–401Google Scholar
  141. Schlirf M (2006) Linkichnus terebrans new ichnogenus et ichnospecies, an insect boring from the Late Triassic of the Germanic Basin, Southern Germany. Ichnos 13:277–280CrossRefGoogle Scholar
  142. Schmidt W, Schurmann M, Teichmüller M (1958) Biss-Spuren un Früchten des Miozän-Waldes der niederrheinischen Braunkohlen-Formation. Fortschr Geol Rheinl u Westf 2:563–572Google Scholar
  143. Schönfeld E (1965) Die Kieselhölzer as der Braunkohle von Böhlen bei Leipzig. Palaeontographica B 99:1–83Google Scholar
  144. Scott AC (1992) Trace-fossils of plant-arthropod interactions. In: Maples CG, West RR (eds) Trace fossils. Short courses in paleontology, vol 5. Paleontological Society, Tennessee, pp 197–223Google Scholar
  145. Scott AC, Paterson S (1984) Techniques for study of plant/arthropod interactions in the fossil record. Geobios Mem Spec 8:449–455CrossRefGoogle Scholar
  146. Scott AC, Taylor TN (1983) Plant/animal interactions during the Upper Carboniferous. Bot Rev 49:259–307CrossRefGoogle Scholar
  147. Scott AC, Stephenson J, Chaloner WG (1992) Interaction and coevolution of plants an arthropods during the Paleozoic and Mesozoic. Philos Trans R Soc Lond B 335:129–165CrossRefGoogle Scholar
  148. Scott AC, Stephenson J, Collinson ME (1994) The fossil record of leaves with galls. In: Williams MJA (ed) Plant galls, vol 49, Systematic association special. Clarendon Press, Oxford, pp 447–470Google Scholar
  149. Scott AC, Anderson JM, Anderson HM (2004) Evidence of plant–insect interactions in the Upper Triassic Molteno Formation of South Africa. J Geol Soc Lond 161:401–410CrossRefGoogle Scholar
  150. Scudder SH (1886) Systematic review of fossil insects. Bull U S Geol Surv 5:9–129Google Scholar
  151. Scudder SH (1890) The Tertiary insects of North America. Rep U S Geol SurvTerr Hayden 13:1–663Google Scholar
  152. Selmeier A (1984) Fossile Bohrgänge von Anobium sp. in einem jungtertiären Lorbeerholz aus Egweil (Südliche Frankenalb.). Archaeopteryx 2:13–29Google Scholar
  153. Sharov AG (1973) Morphological feactures and mode of life of the Palaeodictyoptera. Doklady na 24-kh Chteniyakh pamyati N.A. Kholodkovskogo, Leningrad 25:48–63Google Scholar
  154. Slater BJ, McLoughlin S, Hilton J (2012) Animal-plant interactions in a Middle Permian permineralised peat of the Bainmedart Coal Measures, Prince Charles Mountains, Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 363–364:109–126CrossRefGoogle Scholar
  155. Stephenson J, Scott AC (1992) The geological history of insect-related plant damage. Terra Nova 4:542–552CrossRefGoogle Scholar
  156. Straus A (1977) Gallen, Minen und andere Frasspuren im Pliokän von Willershauen am Harz. Verh Botan Vereins Prov Brandenburg 113:43–80Google Scholar
  157. Strullu-Derrien C, McLoughlin S, Philippe M, Mørk A, Strullu DG (2012) Arthropod interactions with bennettitalean roots in a Triassic permineralized peat from Hopen, Svalbard Archipelago (Arctic). Palaeogeogr Palaeoclimatol Palaeoecol 348–349:45–58CrossRefGoogle Scholar
  158. Stull GW, Labandeira CC, Dimichele WA, Chaney DS (2013) The “seeds” on Padgettia readi are insect galls: reassignment of the plant to Odontopteris, the gall to Ovofoligallites n. gen, and the evolutionary implications thereof. J Paleontol 87:217–231CrossRefGoogle Scholar
  159. Tapanila L, Roberts EN (2012) The earliest evidence of holometabolan insect pupation in conifer wood. PLoS One 7(2):e31668CrossRefGoogle Scholar
  160. Taylor TN, Scott AC (1983) Interactions of plants and animals during the Carboniferous. Bioscience 33:488–493CrossRefGoogle Scholar
  161. Thenius E (1979) Lebensspuren von Ephemeropteren-Larven aus dem Jung-Tertiär des Weiner Beckens. Ann Naturhist Mus Wien 82:177–188Google Scholar
  162. Trout MK, Labandeira CC, Chapman RE (2000) A morphometric analysis of insect damage on Neuropteris and implications for Paleozoic herbivory. Geol Soc Am Abstr Programs 32:219–220Google Scholar
  163. Uchman A (2011) Recent freshwater wood borings from the Vistula River in Poland. In: Carreiro-Silva M, Ávila SP (eds) 7th international bioerosion workshop. Faial, Azores, pp 18–23Google Scholar
  164. Uchman A, Gaigalas A, Melesyte M, Kazakauska V (2007) The trace fossil Asthenopodichnium lithuanicum sp. nov. from Late Neogene brown-coal deposits, Lithuania. Geol Q 51:329–336Google Scholar
  165. Van Ameron HWJ (1966) Phagophytichnus ekowski nov ichnogen & ichnosp, eine Missbildung infolge von Insektenfrass, aus dem spanischen Stephanien (Provinz Leon). Leidse Geol Meded 38:181–184Google Scholar
  166. Van Ameron HWJ (1973) Gibt es Cecidien im Karbon bei Calamiten und Asterophylliten? In: Compte Rendu de la 7me congrès international de stratigraphie et de géologie du carbonifère, vol 2. pp 63–76Google Scholar
  167. Vasilenko DV (2005) Damages on Mesozoic plants from the Transbaikalian locality Chernovskie Kopi. Paleontol J 39:54–59Google Scholar
  168. Vasilenko DV (2006) Margin feeding damage on the leaves of Conifers and Ginkgoales from the Mesozoic of Transbaikalia. Paleontol J 40:53–55CrossRefGoogle Scholar
  169. Vasilenko DV (2007) Feeding damage on upper Permian plants from the Sukhona River. Paleontol J 41:87–90CrossRefGoogle Scholar
  170. Vasilenko DV (2008) Insect on aquatic leaves Quereuxia from the Upper Cretaceous of the Amur Region. Paleontol J 42:514–521CrossRefGoogle Scholar
  171. Vasilenko DV (2011) The first record of endophytic insect oviposition from the Tartarian of European Russia. Paleontol J 45:333–334CrossRefGoogle Scholar
  172. Vialov OC (1975) The fossil traces of nourishment of the insects. Paleontological Collection 12:147–155Google Scholar
  173. Waggoner BM (1999) Fossil oak leaf galls from the Stinking Water paleoflora of Oregon (middle Miocene). Paleobios 19:8–14Google Scholar
  174. Walker MV (1938) Evidence of Triassic insects in the Petrified Forest National Monument, Arizona. Proc U S Natl Mus 85:137–141CrossRefGoogle Scholar
  175. Wesenberg-Lund C (1943) Biologie der Süsswasserinsekten. Gyldendalske Boghandel–Nordisk Forlag, CopenhagenCrossRefGoogle Scholar
  176. Wilf P (2008) Insect damaged fossil leaves record food web response to ancient climate change and extinction. New Phytol 178:486–502CrossRefGoogle Scholar
  177. Wilf P, Labandeira CC (1999) Plant-insect associations respond to paleocene-eocene warming. Science 284:2153–2156CrossRefGoogle Scholar
  178. Wilf P, Labandeira CC, Kress WJ, Staines CL, Windsor DM, Allen AL, Johnson KR (2000) Timing the radiations of the leaf beetles: hispines on gingers from latest cretaceous to recent. Science 289:291–294CrossRefGoogle Scholar
  179. Wilf P, Labandeira CC, Johnson KR, Cúneo RN (2005a) Richness of plant-insect associations in Eocene Patagonia: a legacy for South American biodiversity. Proc Natl Acad Sci U S A 25:8944–8948CrossRefGoogle Scholar
  180. Wilf P, Johnson KR, Cúneo RN, Smith ME, Singer BS, Gandolfo MA (2005b) Eocene plant diversity at Laguna del Hunco and Río Pichileufú, Patagonia, Argentina. Am Nat 165:643–650CrossRefGoogle Scholar
  181. William MJA (1994) Plant galls. Organisms, interactions, populations. Syst Asoc Spec Vol 49. Clarendon Press, OxfordGoogle Scholar
  182. Winkler IS, Labandeira CC, Wappler T, Wilf P (2010) Distinguishing Agromyzidae (Diptera) leaf mines in the fossil record: new taxa from the Paleogene of North America and Germany and their evolutionary implications. J Paleontol 84:935–954CrossRefGoogle Scholar
  183. Wittlake EB (1981) Fossil plant galls. In: Kaiser HE (ed) Neoplasms—comparative pathology of growth in animals, plants, and man. Williams and Wilkins, London, pp 729–731Google Scholar
  184. Zherikhin VV (2002a) Insect trace fossils. In: Rasnitsyn AP, Quicke DLJ (eds) History of insects. Kluwer Academic Publishers, Dordrecht, pp 303–324Google Scholar
  185. Zherikhin VV (2002b) Ecological history of the terrestrial insects. In: Rasnitsyn AP, Quicke DLJ (eds) History of insects. Kluwer Academic Publishers, Dordrecht, pp 330–338Google Scholar
  186. Zherikhin VV (2003) Insect trace fossils, their diversity, classification and scientific importance. Acta Zool Cracov 46:59–66Google Scholar
  187. Zhou Z, Zhang B (1989) A sideritic Protocupressinoxylon with insect borings and frass from the Middle Jurassic, Henan, China. Rev Palaeobot Palinology 59:133–143CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Jorge Fernando Genise
    • 1
    • 2
  1. 1.National Research Council of ArgentinaBuenos AiresArgentina
  2. 2.National Ichnological Collection and Division Icnología of the Museo Argentino de Ciencias NaturalesPresident of the First International Congress on Ichnology (Ichnia 2004)Buenos AiresArgentina

Personalised recommendations