Complex Conference Matrices, Complex Hadamard Matrices and Complex Equiangular Tight Frames

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 148)


In this article we construct new, previously unknown parametric families of complex conference matrices of even orders and of complex Hadamard matrices of square orders and related them to complex equiangular tight frames. It is shown that for any odd integer \(k\ge 3\) such that \(2k=p^{\alpha }+1\), p prime, \(\alpha \) non-negative integer, on the one hand there exists a (2kk) complex equiangular tight frame and for any \(\beta \in \mathbb {N}^{*}\) there exists a \(((2k)^{2^{\beta }},\frac{1}{2}(2k)^{2^{\beta -1}}((2k)^{2^{\beta -1} }\pm 1))\) complex equiangular tight frame depending on one unit complex number, and on the other hand there exist a family of \(((4k)^{2^{\beta }},\frac{1}{2}(4k)^{2^{\beta -1}}((4k)^{2^{\beta -1}}\pm 1))\) complex equiangular tight frames depending on two unit complex numbers.

AMS Classification:

Primacy 42C15 52C17 Secondary 05B20 


  1. 1.
    V. Belevitch, Theory of \(2n\)-terminal networks with applications to conference telephony. Elect. Commun. 27, 231–244 (1950)Google Scholar
  2. 2.
    B.C. Berndt, R.J. Evans, The determination of Gauss sums. Bul. A.M.S. 5(2), 107–129 (1981)Google Scholar
  3. 3.
    B.G. Bodmann, H.J. Elwood, Complex equiangular Parseval frames and Seidel matrices containing pth roots of unity. Proc. AMS 138(12), 4387–4404 (2010)Google Scholar
  4. 4.
    U. Brehm, B. Et-Taoui, Congruence criteria for finite subsets of complex projective and complex hyperbolic spaces. Manuscripta Math. 96, 81–95 (1998)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    A.T. Butson, Generalized Hadamard matrices. Proc. AMS 13, 894–898 (1962)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    P. Delsarte, J.M. Goethals, J.J. Seidel, Orthogonal matrices with zero diagonal II. Can. J. Math. XXXIII(5), 816–832 (1971)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    P. Dita, Complex Hadamard matrices from Sylvester inverse orthogonal matrices. Roum. J. Phys. 54, N\(^{\circ }\)5-6, 433–440 (2009)Google Scholar
  8. 8.
    D.M. Duncan, T.R. Hoffman, J.P. Solazzo, Equiangular tight frames and four root Seidel matrices. Linear Algebra Appl. 432, 2816–2823 (2010)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    R. Euler, T. Zamfirescu, On planar Toeplitz graphs. Graphs Combinatorics 29, 1311–1327 (2013)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    B. Et-Taoui, Infinite family of equi-isoclinic planes in Euclidean odd dimensional spaces and of complex conference matrices of odd orders. arXiv:1409.4282v1
  11. 11.
    B. Et-Taoui, Equiangular lines in \(C^{r}\). Indag. Math. N.S. 11(2), 201–207 (2000)Google Scholar
  12. 12.
    B. Et-Taoui, Equi-isoclinic planes in Euclidean spaces. Indag. Math. N.S. 17(2), 205–219 (2006)Google Scholar
  13. 13.
    J.M. Goethals, J.J. Seidel, Orthogonal matrices with zero diagonal. Can. J. Math. 19, 1001–1010 (1967)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    R.B. Holmes, V.I. Paulsen, Optimal frames for erasures. Linear Algebra Appl. 377, 31–51 (2004)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    P.H.J. Lampio, F. Szöllösi, P.R.J. Ostergard, The quaternary complex Hadamard matrices of orders 10, 12 and 14. Discrete Math. 313, 189–206 (2013)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    P.W.H. Lemmens, J.J. Seidel, Equiangular lines. J. Algebra 24, 494–512 (1973)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    J.H. van Lint, J.J. Seidel, Equilateral point sets in elliptic geometry. Indag. Math. N.S. 28, 335–348 (1966)Google Scholar
  18. 18.
    S. Malik, T. Zamfirescu, Hamiltonian connectedness in directed Toeplitz graphs. Sci. Math. Roumanie (N.S.) 53(101) no. 2, 145–156 (2010)Google Scholar
  19. 19.
    R. Mathon, Symmetric conference matrices of order \(pq^{2}+1\). Can. J. Math. 30, 321–331 (1978)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    R.E.A.C. Paley, On orthogonal matrices. J. Math. Phys. 12, 311–320 (1933)CrossRefMATHGoogle Scholar
  21. 21.
    D. Raghavarao, Some aspects of weighing designs. Ann. Math. Statist. 31, 878–884 (1960)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    J. Seberry, A.L. Whiteman, New Hadamard matrices and conference matrices obtained via Mathon’s construction. Graphs and Combinatorics 4, 355–377 (1988)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    F. Szöllösi, Parametrizing complex Hadamard matrices. European J. Comb. 29, 1219–1234 (2008)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    F. Szöllösi, Complex Hadamard matrices and Equiangular tight frames. Linear Algebra Appl. 438(4), 1962–1967 (2013)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    J. Williamson, Hadamard’s determinant theorem and the sum of four squares. Duke Math. J. 11, 65–81 (1944)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    G. Zauner, Quantum designs. IJQI 9(1), 445–507 (2011)MathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Université de Haute Alsace – LMIAMulhouse CedexFrance

Personalised recommendations