Advertisement

Generic Construction of UC-Secure Oblivious Transfer

  • Olivier Blazy
  • Céline Chevalier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9092)

Abstract

We show how to construct a completely generic UC-secure oblivious transfer scheme from a collision-resistant chameleon hash scheme (CH) and a CCA encryption scheme accepting a smooth projective hash function (SPHF).

Our work is based on the work of Abdalla et al. at Asiacrypt 2013, where the authors formalize the notion of SPHF-friendly commitments, i.e. accepting an SPHF on the language of valid commitments (to allow implicit decommitment), and show how to construct from them a UC-secure oblivious transfer in a generic way. But Abdalla et al. only gave a DDH-based construction of SPHF-friendly commitment schemes, furthermore highly relying on pairings. In this work, we show how to generically construct an SPHF-friendly commitment scheme from a collision-resistant CH scheme and an SPHF-friendly CCA encryption scheme. This allows us to propose an instanciation of our schemes based on the DDH, as efficient as that of Abdalla et al., but without requiring any pairing. Interestingly, our generic framework also allows us to propose an instantiation based on the learning with errors (LWE) assumption. For the record, we finally propose a last instanciation based on the decisional composite residuosity (DCR) assumption.

Keywords

Commitments Smooth Projective Hash Functions CCA encryption Oblivious Transfer UC framework 

Notes

Acknowledgements

This work was supported in part by the French ANR-14-CE28-0003 EnBiD Project.

References

  1. [ABB+13]
    Abdalla, M., Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D.: SPHF-friendly non-interactive commitments. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 214–234. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. [ACP09]
    Abdalla, M., Chevalier, C., Pointcheval, D.: Smooth projective hashing for conditionally extractable commitments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 671–689. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. [BBC+13a]
    Ben Hamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: Efficient UC-secure authenticated key-exchange for algebraic languages. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 272–291. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. [BBC+13b]
    Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New techniques for SPHFs and efficient one-round PAKE protocols. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 449–475. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. [BC15]
    Blazy, O., Chevalier, C.: Generic Construction of UC-Secure Oblivious Transfer. Cryptology ePrint Archive, 2015. Full version of the present paperGoogle Scholar
  6. [BCPV13]
    Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: Analysis and improvement of lindell’s UC-secure commitment schemes. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 534–551. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. [BN05]
    Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. [Can01]
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press (2001)Google Scholar
  9. [CF01]
    Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 19. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. [CHKP10]
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. [CKWZ13]
    Choi, S.G., Katz, J., Wee, H., Zhou, H.-S.: Efficient, adaptively secure, and composable oblivious transfer with a single, global CRS. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 73–88. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. [CLOS02]
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: 34th ACM STOC, pp. 494–503. ACM Press, New York (2002)Google Scholar
  13. [CS02]
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, p. 45. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. [DN02]
    Damgård, I.B., Nielsen, J.B.: Perfect hiding and perfect binding universally composable commitment schemes with constant expansion factor. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, p. 581. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. [EHK+13]
    Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. [ElG84]
    El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  17. [FLM11]
    Fischlin, M., Libert, B., Manulis, M.: Non-interactive and re-usable universally composable string commitments with adaptive security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 468–485. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. [GL03]
    Gennaro, R., Lindell, Y.: A framework for password-based authenticated key exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. [GWZ09]
    Garay, J.A., Wichs, D., Zhou, H.-S.: Somewhat non-committing encryption and efficient adaptively secure oblivious transfer. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 505–523. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. [Har11]
    Haralambiev, K.: Efficient cryptographic primitives for non-interactive zero-knowledge proofs and applications. Ph.D. Thesis, New York University (2011)Google Scholar
  21. [HK07]
    Horvitz, O., Katz, J.: Universally-composable two-party computation in two rounds. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 111–129. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. [HO09]
    Hemenway, B., Ostrovsky, R.: Lossy trapdoor functions from smooth homomorphic hash proof systems. In: Electronic Colloquium on Computational Complexity (ECCC), vol. 16, p. 127 (2009)Google Scholar
  23. [Kal05]
    Kalai, Y.T.: Smooth projective hashing and two-message oblivious transfer. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 78–95. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. [KR00]
    Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS 2000. The Internet Society (2000)Google Scholar
  25. [KV09]
    Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-based authenticated key exchange from lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 636–652. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. [KV11]
    Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  27. [Lin11]
    Lindell, Y.: Highly-efficient universally-composable commitments based on the DDH assumption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 446–466. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  28. [MP12]
    Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  29. [NP01]
    Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: 12th SODA, pp. 448–457. ACM-SIAM (2001)Google Scholar
  30. [Ped91]
    Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
  31. [PVW08]
    Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  32. [Rab81]
    Rabin, M.O.: How to exchange secrets with oblivious transfer. Technical Report TR81, Harvard University (1981)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.XLimUniversité de LimogesLimogesFrance
  2. 2.Université Panthéon-AssasParisFrance

Personalised recommendations