Advertisement

mrPUF: A Novel Memristive Device Based Physical Unclonable Function

  • Yansong GaoEmail author
  • Damith C. Ranasinghe
  • Said F. Al-Sarawi
  • Omid Kavehei
  • Derek Abbott
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9092)

Abstract

Physical unclonable functions (PUFs) exploit the intrinsic complexity and irreproducibility of physical systems to generate secret information. They have been proposed to provide higher level security as a hardware security primitive. Notably PUFs are an emerging and promising solution for establishing trust in an embedded system with low overhead with respect to energy and area. Most current PUF designs traditionally focus on exploiting process variations in CMOS (Complementary Metal Oxide Semiconductor) technology. In recent years, progress in nanoelectronic devices such as memristors has demonstrated the prevalence of process variations in scaling electronics down to the nano region. In this paper we exploit the extremely large information density available in the nanocrossbar architecture and the large resistance variations of memristors to develop on-chip memristive device based PUF (mrPUF). Our proposed architecture demonstrates good uniqueness, reliability and improved number of challenge-response pairs (CRPs). The proposed mrPUF is validated using nanodevices characteristics obtained from experimental data and extensive simulations. In addition, the performance of our mrPUF is compared with existing memristor based PUF architectures. Furthermore, we analyze and demonstrate the improved security with respect to model building attacks by expounding upon the inherent nature of nanocrossbar arrays where we use the independence between nanocrossbar columns to generate responses to challenges.

Keywords

Physical unclonable function PUFs Hardware security Memristor Nanocrossbar Model building attack 

Notes

Acknowledgment

This research was supported by a grant from the Australian Research Council (DP140103448). The authors also appreciate sponsorship from the China Scholarship Council, and the support from the Department of Further Education, Employment, Science and Technology (DFEEST) under the Collaboration Pathways Program, Government of South Australia.

References

  1. 1.
    Kömmerling, O., Kuhn, M.G.: Design principles for tamper-resistant smartcard processors. In: Proceedings of the USENIX Workshop on Smartcard Technology, pp. 9–20. USENIX Association (1999)Google Scholar
  2. 2.
    Lee, J.W., Lim, D., Gassend, B., Suh, G.E., Van Dijk, M., Devadas, S.: A technique to build a secret key in integrated circuits for identification and authentication applications. In: Proceedings of the IEEE Symposium on VLSI Circuits, pp. 176–179 (2004)Google Scholar
  3. 3.
    Ranasinghe, D.C., Cole, P.H.: Networked RFID Systems and Lightweight Cryptography. Springer, Berlin (2008)Google Scholar
  4. 4.
    Maes, R., Van Herrewege, A., Verbauwhede, I.: PUFKY: a fully functional PUF-based cryptographic key generator. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 302–319. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    van Dijk, M., Rührmair, U.: Physical unclonable functions in cryptographic protocols: security proofs and impossibility results. IACR Cryptology ePrint Archive 2012: 228 (2012)Google Scholar
  6. 6.
    Zhang, L., Kong, Z.H., Chang, C.-H.: PCKGen: a phase change memory based cryptographic key generator. In: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1444–1447 (2013)Google Scholar
  7. 7.
    Ruhrmair, U., van Dijk, M.: PUFs in security protocols: attack models and security evaluations. In: IEEE Symposium on Security and Privacy (SP), pp. 286–300 (2013)Google Scholar
  8. 8.
    Kang, H., Hori, Y., Katashita, T., Hagiwara, M., Iwamura, K.: Cryptographie key generation from PUF data using efficient fuzzy extractors. In: Proceedings of the IEEE 16th International Conference on Advanced Communication Technology (ICACT), pp. 23–26 (2014)Google Scholar
  9. 9.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)CrossRefGoogle Scholar
  10. 10.
    Kim, K.-H., Gaba, S., Wheeler, D., Cruz-Albrecht, J.M., Hussain, T., Srinivasa, N., Lu, W.: A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Lett. 12(1), 389–395 (2011)CrossRefGoogle Scholar
  11. 11.
    Kavehei, O., Al-Sarawi, S., Cho, K.-R., Eshraghian, K., Abbott, D.: An analytical approach for memristive nanoarchitectures. IEEE Trans. Nanotechnol. 11(2), 374–385 (2012)CrossRefGoogle Scholar
  12. 12.
    Gassend, B., Lim, D., Clarke, D., Van Dijk, M., Devadas, S.: Identification and authentication of integrated circuits. Concurrency Comput. Pract. Experience 16(11), 1077–1098 (2004)CrossRefGoogle Scholar
  13. 13.
    Lim, D., Lee, J.W., Gassend, B., Suh, G.E., Van Dijk, M., Devadas, S.: Extracting secret keys from integrated circuits. IEEE Trans. Very Large Scale Integr. VLSI Syst. 13(10), 1200–1205 (2005)CrossRefGoogle Scholar
  14. 14.
    Kumar, R., Patil, V. C., Kundu, S.: Design of unique and reliable physically unclonable functions based on current starved inverter chain. In: Proceedings of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 224–229 (2011)Google Scholar
  15. 15.
    Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication and secret key generation. In: Proceedings of the 44th Annual Design Automation Conference, pp. 9–14 (2007)Google Scholar
  16. 16.
    Suzuki, D., Shimizu, K.: The glitch PUF: a new delay-PUF architecture exploiting glitch shapes. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 366–382. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Holcomb, D.E., Burleson, W.P., Fu, K.: Initial SRAM state as a fingerprint and source of true random numbers for RFID tags. In Proceedings of the Conference on RFID Security, vol. 7 (2007)Google Scholar
  18. 18.
    Holcomb, D.E., Burleson, W.P., Fu, K.: Power-up SRAM state as an identifying fingerprint and source of true random numbers. IEEE Trans. Comput. 58(9), 1198–1210 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Su, Y., Holleman, J., Otis, B.P.: A digital 1.6 pJ/bit chip identification circuit using process variations. IEEE J. Solid-State Circuits 43(1), 69–77 (2008)CrossRefGoogle Scholar
  20. 20.
    Maes, R., Tuyls, P., Verbauwhede, I.: Intrinsic PUFs from flip-flops on reconfigurable devices. In: 3rd Benelux Workshop on Information and System Security (WISSec 2008), vol. 17 (2008)Google Scholar
  21. 21.
    van der Leest, V., Schrijen, G.-J., Handschuh, H., Tuyls, P.: Hardware intrinsic security from D flip-flops. In: Proceedings of the Fifth ACM Workshop on Scalable Trusted Computing, pp. 53–62. ACM (2010)Google Scholar
  22. 22.
    Kumar, S.S., Guajardo, J., Maes, R., Schrijen, G.-J., Tuyls, P.: The butterfly PUF protecting IP on every FPGA. In: IEEE International Workshop on Hardware-Oriented Security and Trust, 2008, HOST 2008, pp. 67–70 (2008)Google Scholar
  23. 23.
    Roel, M.: Physically unclonable functions: constructions, properties and applications. Ph.D. thesis, Dissertation, University of KU Leuven (2012)Google Scholar
  24. 24.
    Herder, C., Yu, M.D., Koushanfar, F., Devadas, S.: Physical unclonable functions and applications: a tutorial. Proc. IEEE 102(8), 1126–1141 (2014)CrossRefGoogle Scholar
  25. 25.
    Maiti, A., Casarona, J., McHale, L., Schaumont, P.: A large scale characterization of RO-PUF. In: IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), pp. 94–99 (2010)Google Scholar
  26. 26.
    Borghetti, J., Strukov, D.B., Pickett, M.D., Yang, J.J., Stewart, D.R., Williams, R.S.: Electrical transport and thermometry of electroformed titanium dioxide memristive switches. J. Appl. Phys. 106(12), 124504 (2009)CrossRefGoogle Scholar
  27. 27.
    Choi, S., Yang, Y., Lu, W.: Random telegraph noise and resistance switching analysis of oxide based resistive memory. Nanoscale 6(1), 400–404 (2014)CrossRefGoogle Scholar
  28. 28.
    Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  29. 29.
    Hori, Y., Yoshida, T., Katashita, T., Satoh, A.: Quantitative and statistical performance evaluation of arbiter physical unclonable functions on FPGAs. In: International Conference on Reconfigurable Computing and FPGAs (ReConFig), pp. 298–303. IEEE (2010)Google Scholar
  30. 30.
    Kavehei, O., Hosung, C., Ranasinghe, D.C., Skafidas, S.: mrPUF: a memristive device based physical unclonable function. arXiv preprint arXiv:1302.2191 (2013)
  31. 31.
    Kavehei, O., Linn, E., Nielen, L., Tappertzhofen, S., Skafidas, E., Valov, I., Waser, R.: An associative capacitive network based on nanoscale complementary resistive switches for memory-intensive computing. Nanoscale 5(11), 5119–5128 (2013)CrossRefGoogle Scholar
  32. 32.
    Kim, K.-H., Jo, S.H., Gaba, S., Lu, W.: Nanoscale resistive memory with intrinsic diode characteristics and long endurance. Appl. Phys. Lett. 96(5), 053106 (2010)CrossRefGoogle Scholar
  33. 33.
    Ranasinghe, D.C., Engels, D.W., Cole, P.H.: Security and privacy solutions for low-cost rfid systems. In: Proceedings of the IEEE Inelligent Sensors, Sensor Networks and Information Processing Conference, pp. 337–342 (2004)Google Scholar
  34. 34.
    Ranasinghe, D.C., Cole, P.H.: Confronting security and privacy threats in modern RFID systems. In: Proceedings of the IEEE Fortieth Asilomar Conference on Signals, Systems and Computers, pp. 2058–2064 (2004)Google Scholar
  35. 35.
    Koeberl, P., Kocabaş, Ü., Sadeghi, A.-R.: Memristor PUFs: a new generation of memory-based physically unclonable functions. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 428–431. EDA Consortium (2013)Google Scholar
  36. 36.
    Kvatinsky, S., Talisveyberg, K., Fliter, D., Friedman, E.G., Kolodny, A., Weiser, U.C.: Verilog-A for memristor models. Technical report, Citeseer (2011)Google Scholar
  37. 37.
    Kwon, D.-H., Kim, K.M., Jang, J.H., Jeon, J.M., Lee, M.H., Kim, G.H., Li, X.-S., Park, G.-S., Lee, B., Han, S., et al.: Atomic structure of conducting nanofilaments in TiO\( _2 \) resistive switching memory. Nature Nanotechnology 5(2), 148–153 (2010)CrossRefGoogle Scholar
  38. 38.
    Linn, E., Rosezin, R., Kügeler, C., Waser, R.: Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9(5), 403–406 (2010)CrossRefGoogle Scholar
  39. 39.
    Mahmoud, A., Rührmair, U., Majzoobi, M., Koushanfar, F.: Combined modeling and side channel attacks on strong PUFs. IACR Cryptology ePrint Archive 2013:632 (2013)Google Scholar
  40. 40.
    Maiti, A., Gunreddy, V., Schaumont, P.: A systematic method to evaluate and compare the performance of physical unclonable functions. In: Athanas, P., Pnevmatikatos, D., Sklavos, N. (eds.) Embedded Systems Design with FPGAs, pp. 245–267. Springer, New York (2013)CrossRefGoogle Scholar
  41. 41.
    Potkonjak, M., Goudar, V.: Public physical unclonable functions. Proc. IEEE 102(8), 1142–1156 (2014)CrossRefGoogle Scholar
  42. 42.
    Rajendran, J., Karri, R., Rose, G.S.: Improving tolerance to variations in memristor-based applications using parallel memristors. IEEE Trans. Comput. 64(3), 733–746 (2015)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Rajendran, J., Karri, R., Wendt, J.B., Potkonjak, M., McDonald, N.R., Rose, G.S., Wysocki, B.T.: Nanoelectronic solutions for hardware security. IACR Cryptology ePrint Archive 2012:575 (2012)Google Scholar
  44. 44.
    Rajendran, J., Rose, G.S., Karri, R., Potkonjak, M.: Nano-PPUF: a memristor-based security primitive. In: 2012 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 84–87 (2012)Google Scholar
  45. 45.
    Rose, G.S., McDonald, N., Yan, L.-K., Wysocki, B.: A write-time based memristive PUF for hardware security applications. In: IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 830–833 (2013)Google Scholar
  46. 46.
    Rostami, M., Wendt, J.B., Potkonjak, M., Koushanfar, F.: Quo vadis, PUF?: trends and challenges of emerging physical-disorder based security. In: Proceedings of the Conference on Design, Automation & Test in Europe, p. 352. European Design and Automation Association (2014)Google Scholar
  47. 47.
    Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.: Modeling attacks on physical unclonable functions. In: Proceedings of the 17th ACM Conference on Computer and Communications Security, pp. 237–249. ACM (2010)Google Scholar
  48. 48.
    Valov, I., Waser, R., Jameson, J.R., Kozicki, M.N.: Electrochemical metallization memoriesfundamentals, applications, prospects. Nanotechnology 22(25), 254003 (2011)CrossRefGoogle Scholar
  49. 49.
    Vourkas, I., Batsos, A., Sirakoulis, G.C.: SPICE modeling of nonlinear memristive behavior. Int. J. Circuit Theory and Appl. 43(5), 553–565 (2013)CrossRefGoogle Scholar
  50. 50.
    Wu, S., Ren, L., Qing, J., Yu, F., Yang, K., Yang, M., Wang, Y., Meng, M., Zhou, W., Zhou, X., Li, S.: Bipolar resistance switching in transparent ITO/LaAlO\(_3\)/SrTiO\(_3\) memristors. ACS Appl. Mater. Interfaces 6(11), 8575–8579 (2014)CrossRefGoogle Scholar
  51. 51.
    Gao, Y., Ranasinghe, D.C., Al-Sarawi, S.F., Kavehei, O., Abbott, D.: Memristive crypto primitive for building highly secure physical unclonable functions. Sci. Rep. 5 (2015). Article Number 12785Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Yansong Gao
    • 1
    • 2
    Email author
  • Damith C. Ranasinghe
    • 2
  • Said F. Al-Sarawi
    • 1
  • Omid Kavehei
    • 3
  • Derek Abbott
    • 1
  1. 1.School of Electrical and Electronic EngineeringThe University of AdelaideAdelaideAustralia
  2. 2.Auto-ID Labs, School of Computer ScienceThe University of AdelaideAdelaideAustralia
  3. 3.Functional Materials and Microsystems Research Group, School of Electrical and Computer EngineeringRoyal Melbourne Institute of TechnologyMelbourneAustralia

Personalised recommendations