On Logic Embeddings and Gödel’s God
Conference paper
First Online:
Abstract
We have applied an elegant and flexible logic embedding approach to verify and automate a prominent philosophical argument: the ontological argument for the existence of God. In our ongoing computer-assisted study, higher-order automated reasoning tools have made some interesting observations, some of which were previously unknown.
References
- 1.Anderson, C.A.: Some emendations of Gödel’s ontological proof. Faith Philos. 7(3), 291–303 (1990)CrossRefGoogle Scholar
- 2.Anderson, C.A., Gettings, M.: Gödel ontological proof revisited. In: Gödel’96: Logical Foundations of Mathematics, Computer Science, and Physics: Lecture Notes in Logic 6, pages 167–172. Springer, (1996)Google Scholar
- 3.Benzmüller, C.: Automating quantified conditional logics in HOL. In: Proceedings of IJCAI 2013, pp. 746–753, Beijing, China (2013)Google Scholar
- 4.Benzmüller, C.: A top-down approach to combining logics. In: Proceedings of ICAART 2013, pp. 346–351. SciTePress Digital Library, Barcelona, Spain (2013)Google Scholar
- 5.Benzmüller, C., Paleo, B.W.: Gödel’s God in Isabelle/HOL. Arch. Formal Proofs (2013)Google Scholar
- 6.Benzmüller, C., Paleo, B.W.: Automating Gödel’s ontological proof of God’s existence with higher-order automated theorem provers. In: ECAI 2014. Frontiers in AI and Applications, vol. 263, pp. 163–168. IOS Press (2014)Google Scholar
- 7.Benzmüller, C., Weber, L., Paleo, B.W.: Computer-assisted analysis of the Anderson-Hájek ontological controversy. Handbook of the 1st World Congress on Logic and Religion, João Pessoa, Brazil (2015)Google Scholar
- 8.Benzmüller, C., Woltzenlogel Paleo, B.: Interacting with modal logics in the coq proof assistant. In: Beklemishev, L.D. (ed.) CSR 2015. LNCS, vol. 9139, pp. 398–411. Springer, Heidelberg (2015) zbMATHGoogle Scholar
- 9.Benzmüller, C., Paulson, L.: Quantified multimodal logics in simple type theory. Logica Univers. (Spec. Issue Multimodal Logics) 7(1), 7–20 (2013)MathSciNetCrossRefGoogle Scholar
- 10.Benzmüller, C.E., Paulson, L.C., Theiss, F., Fietzke, A.: LEO-II - a cooperative automatic theorem prover for classical higher-order logic (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 162–170. Springer, Heidelberg (2008) CrossRefGoogle Scholar
- 11.Bjørdal, F.: Understanding Gödel’s ontological argument. In: The Logica Yearbook 1998. Filosofia (1999)Google Scholar
- 12.Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010) CrossRefGoogle Scholar
- 13.Brown, C.E.: Satallax: an automatic higher-order prover. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 111–117. Springer, Heidelberg (2012) CrossRefGoogle Scholar
- 14.Church, A.: A formulation of the simple theory of types. J. Symbolic Logic 5, 56–68 (1940)MathSciNetCrossRefGoogle Scholar
- 15.Fitting, M., Mendelsohn, R.L.: First-Order Modal Logic. Synthese Library, vol. 277. Kluwer, Dordrecht (1998) CrossRefGoogle Scholar
- 16.Fitting, M.: Types, Tableaus, and Gödel’s God. Kluwer, Norwell (2002)CrossRefGoogle Scholar
- 17.Fuhrmann, A.: Existenz und Notwendigkeit – Kurt Gödels axiomatische Theologie. In: Logik in der Philosophie, Heidelberg (Synchron) (2005)Google Scholar
- 18.Gabbay, D.M.: Labelled Deductive Systems. Clarendon Press, Oxford (1996) zbMATHGoogle Scholar
- 19.Gödel, K.: Appx.A: notes in Kurt Gödel’s hand. In: [25], pp. 144–145 (2004)Google Scholar
- 20.Hajek, P.: A new small emendation of Gödel’s ontological proof. Stud. Logica: Int. J. Symbolic Logic 71(2), 149–164 (2002)MathSciNetCrossRefGoogle Scholar
- 21.Hajek, P.: Ontological proofs of existence and non-existence. Stud. Logica: Int. J. Symbolic Logic 90(2), 257–262 (2008)MathSciNetCrossRefGoogle Scholar
- 22.Oppenheimera, P.E., Zalta, E.N.: A computationally-discovered simplification of the ontological argument. Australas. J. Philos. 89(2), 333–349 (2011)CrossRefGoogle Scholar
- 23.Rushby, J.: The ontological argument in PVS. In: Proceedings of CAV Workshop “Fun With Formal Methods”, St. Petersburg, Russia (2013)Google Scholar
- 24.Scott, D.: Appx.B: notes in Dana Scott’s hand. In: [25], pp. 145–146 (2004)Google Scholar
- 25.Sobel, J.H.: Logic and Theism: Arguments for and Against Beliefs in God. Cambridge University Press, Cambridge (2004) Google Scholar
- 26.Stalnaker, R.C.: A theory of conditionals. In: Rescher, N. (ed.) Studies in Logical Theory, pp. 98–112. Blackwell, Oxford (1968)Google Scholar
- 27.Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the TPTP THF infrastructure. J. Formalized Reasoning 3(1), 1–27 (2010)MathSciNetzbMATHGoogle Scholar
Copyright information
© Springer International Publishing Switzerland 2015