Personalised Medicine: Taking a New Look at the Patient

  • Marco Scutari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9521)


Personalised medicine strives to identify the right treatment for the right patient at the right time, integrating different types of biological and environmental information.


Feature Selection Bayesian Network Personalise Medicine Molecular Diagnostics Omics Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cavalli-Sforza, L.L., Feldman, M.W.: The application of molecular genetic approaches to the study of human evolution. Nat. Genet. 33, 266–275 (2003)CrossRefGoogle Scholar
  2. 2.
    Collins, F.S., Morgan, M., Patrinos, A.: The human genome project: lessons from large-scale biology. Science 300(5167), 186–290 (2003)Google Scholar
  3. 3.
    Cooper, G.F., et al.: An efficient bayesian method for predicting clinical outcomes from genome-wide data. In: AMIA Annual Symposium Proceedings, pp. 127–131 (2010)Google Scholar
  4. 4.
    Emmer-Streib, F.: Personalized medicine: has it started yet? A reconstruction of the early history. Front. Genet. 3(313), 1–4 (2013)Google Scholar
  5. 5.
    Friedman, N., Linial, M., Nachman, I.: Using Bayesian networks to analyze expression data. J. Comput. Biol. 7, 601–620 (2000)CrossRefGoogle Scholar
  6. 6.
    Ginsburg, G.S., McCarthy, J.J.: Personalized medicine: revolutionizing drug discovery and patient care. Trends Biotechnol. 19(12), 491–496 (2001)CrossRefGoogle Scholar
  7. 7.
    Golub, T.R., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439), 531–537 (1999)CrossRefGoogle Scholar
  8. 8.
    Gygi, S.P., et al.: Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999 (1999)CrossRefGoogle Scholar
  9. 9.
    Hamburg, M.A., Collins, F.S.: The path to personalized medicine. New Engl. J. Med. 363, 301–304 (2010)CrossRefGoogle Scholar
  10. 10.
    Ideker, T., et al.: Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292(5518), 929–934 (2001)CrossRefGoogle Scholar
  11. 11.
    Koller D., Sahami M.: Toward optimal feature selection. In: Proceedings of the 13th International Conference on Machine Learning (ICML), pp. 284–292 (1996)Google Scholar
  12. 12.
    Mourad, R., Sinoquet, C., Leray, P.: A hierarchical bayesian network approach for linkage disequilibrium modeling and data-dimensionality reduction prior to genome-wide association studies. BMC Bioinform. 12(16), 1–20 (2011)Google Scholar
  13. 13.
    Sachs, K., et al.: Causal protein-signaling networks derived from multiparameter single-cell data. Science 308(5721), 523–529 (2005)CrossRefGoogle Scholar
  14. 14.
    Sawicki, M.P., et al.: Human genome project. Am. J. Surg. 165(2), 258–264 (1993)CrossRefGoogle Scholar
  15. 15.
    Schadt, E.E., et al.: An integrative genomics approach to infer causal associations between gene expression and disease. Nat. Genet. 37(7), 710–717 (2005)CrossRefGoogle Scholar
  16. 16.
    Scutari, M., Strimmer, K.: Introduction to graphical modelling. In: Balding, D.J., Stumpf, M., Girolami, M. (eds.) Handbook of Statistical Systems Biology. Wiley, Hoboken (2011)Google Scholar
  17. 17.
    Waring, J.F., et al.: Microarray analysis of hepatotoxins in vitro reveals a correlation between gene expression profiles and mechanisms of toxicity. Toxicol. Lett. 120(1–3), 359–368 (2001)CrossRefGoogle Scholar
  18. 18.
    Weston, A.D., Hood, L.: Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine. J. Proteome Res. 3(2), 179–196 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of StatisticsUniversity of OxfordOxfordUK

Personalised recommendations