Advertisement

Representing Knowledge for Clinical Diagnostic Reasoning

  • Peter J. F. Lucas
  • Felipe Orihuela-Espina
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9521)

Abstract

The early medical diagnostic applications often had the form of rule-based expert systems and started to appear around the mid 1970s. Soon, it became apparent that developing reliable diagnostic systems required an understanding of the principles underlying diagnosis, which at the time were poorly understood.

References

  1. 1.
    Arroll, B., Allan, G.M., Elley, C.R., Kenealy, T., McCormack, J., Hudson, B., Hoare, K.: Diagnosis in primary care: probabilistic reasoning. J. Prim. Health Care 4(2), 166–173 (2012)Google Scholar
  2. 2.
    Beschta, A., Dressler, O., Freitag, H., Montag, M., Struss, P.: DPNet – a second generation expert system for localizing faults in power transmission networks. In: Proceedings of the International Conference on Fault Diagnosis (Tooldiag93), pp. 1019–1027. Toulouse (1993)Google Scholar
  3. 3.
    Buchanan, B.G., Shortliffe, E.H.: Rule-based Expert Systems: the MYCIN Experiments of the Stanford Heuristic Programming Project. Addison-Wesley, Reading (1984)Google Scholar
  4. 4.
    Clancey, W.J.: Heuristic classification. Artif. Intell. 27, 289–350 (1985)CrossRefGoogle Scholar
  5. 5.
    Console, L., Theseider Dupré, D., Torasso, P.: A theory of diagnosis for incomplete causal models. In: International Joint Conference on Artificial Intelligence (IJCAI 1989), pp. 1311–1317. AAAI Press (1989)Google Scholar
  6. 6.
    Davis, R., Hamscher, W.: Model-based reasoning: troubleshooting. In: Shrobe, H.E. (ed.) Exploring Artificial Intelligence: Survey Talks from the National Conference on Artificial Intelligence, pp. 297–346. Morgan Kaufmann, San Mateo (1988)Google Scholar
  7. 7.
    de Kleer, J., Williams, B.C.: Diagnosing multiple faults. Artif. Intell. 32, 97–130 (1987)zbMATHCrossRefGoogle Scholar
  8. 8.
    Doust, J.: Diagnosis in general practice: using probabilistic reasoning. Br. Med. J. 339(b3823), 1080–1082 (2009)Google Scholar
  9. 9.
    Downing, K.L.: Physiological applications of consistency-based diagnosis. Artif. Intell. Med. 5, 9–30 (1993)CrossRefGoogle Scholar
  10. 10.
    Ganger, C.W.J.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37, 424–438 (1969)CrossRefGoogle Scholar
  11. 11.
    Hamscher, W., Console, L., De Kleer, J.: Readings in Model-based Diagnosis. Morgan Kaufmann, San Mateo (1992)Google Scholar
  12. 12.
    de Kleer, J., Williams, B.C.: Diagnosis with behavioural modes. In: Proceedings of the 11th International Joint Conference on Artificial Intelligence, pp. 1324–1330. AAAI Press (1989)Google Scholar
  13. 13.
    Kwisthout, J.: Most probable explanations in Bayesian networks: complexity and tracability. Int. J. Approximate reasoning 52, 1452–1469 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Lamport, L.: Time, clocks and the ordering of events in a distributed system. Commun. ACM 21(7), 558–565 (1978)zbMATHCrossRefGoogle Scholar
  15. 15.
    Lucas, P.J.F.: Analysis of notions of diagnosis. Artif. Intell. 105(1–2), 293–341 (1998)Google Scholar
  16. 16.
    Lucas, P.J.F., van der Gaag, L.C.: Principles of Expert Systems. Addison-Wesley, Wokingham (1991)zbMATHGoogle Scholar
  17. 17.
    Pearl, J.: Causality: Models, Reasoning and Inference, 2nd edn. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  18. 18.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo (1988)Google Scholar
  19. 19.
    Poole, D.: Representing knowledge for logic-based diagnosis. In: Proceedings of the International Conference on Fifth Generation Computer Systems 1988, pp. 1282–1290. ICOT (1988)Google Scholar
  20. 20.
    Poole, D., Goebel, R., Aleliunas, R.: Theorist: a logical reasoning system for defaults and diagnosis. In: Cercone, N., Mc Calla, G. (eds.) The Knowledge Frontier, pp. 331–352. Springer, Berlin (1987)CrossRefGoogle Scholar
  21. 21.
    Poole, D., Mackworth, A.: Artificial Intelligence: Foundations of Computational Agents. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  22. 22.
    Poole, D.: Representing diagnosis knowledge. Ann. Math. Artif. Intell. 11, 33–50 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Reggia, J.A., Nau, D.S., Wang, Y.: Diagnostic expert systems based on a set-covering model. Int. J. Man Mach. Stud. 19, 437–460 (1983)CrossRefGoogle Scholar
  24. 24.
    Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32, 57–95 (1987)zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Rubin, D.: Causal inference using potential outcomes. J. Am. Stat. Assoc. 100(469), 322–331 (2005)zbMATHCrossRefGoogle Scholar
  26. 26.
    Soltani, A., Moayyeri, A.: Deterministic versus evidence-based attitude towards clinical diagnosis. J. Eval. Clin. Pract. 13, 533–537 (2007)CrossRefGoogle Scholar
  27. 27.
    Sox, H., Higgens, M.C., Owens, D.K.: Clinical Decision Making, 2nd edn. Wiley, Hoboken (2013)Google Scholar
  28. 28.
    Torasso, P., Console, L.: Diagnostic Problem Solving. North Oxford Academic Publishers, London (1989)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute for Computing and Information SciencesRadboud UniversityNijmegenThe Netherlands
  2. 2.LIACSLeiden UniversityLeidenThe Netherlands
  3. 3.Instituto Nacional de AstrofísicaÓptica y ElectrónicaPueblaMexico

Personalised recommendations