Advertisement

A Hybrid Approach to the Verification of Computer Interpretable Guidelines

  • Luca Anselma
  • Alessio Bottrighi
  • Laura Giordano
  • Arjen Hommersom
  • Gianpaolo Molino
  • Stefania Montani
  • Paolo Terenziani
  • Mauro Torchio
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9521)

Abstract

Computer Interpretable Guidelines (CIGs) are assuming a major role in the medical area, in order to enhance the quality of medical assistance by providing physicians with evidence-based recommendations. However, the complexity of CIGs (which may contain hundreds of related clinical activities) demands for a verification process, aimed at assuring that a CIG satisfies several different types of properties (e.g., verification of the CIG correctness with respect to several criteria). Verification is a demanding task, which may be enhanced through the adoption of advanced Artificial Intelligence techniques. In this paper, we propose a general and hybrid approach to address such a task, suggesting that, given the heterogeneous character of the knowledge in CIGs, different forms of verification should be supported, through the adoption of proper (and different) methodologies.

Keywords

Model Check Temporal Constraint Composite Action Temporal Reasoning Linear Time Temporal Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    van den Akker, M., et al.: Multimorbidity in general practice: prevalence, incidence, and determinants of co-occurring chronic and recurrent diseases. J. Clin. Epidemiol. 51(5), 367–375 (1998)CrossRefGoogle Scholar
  2. 2.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)MATHCrossRefGoogle Scholar
  3. 3.
    Andreassen, S., et al.: Using probabilistic and decision-theoretic methods in treatment and prognosis modeling. Artif. Intell. Med. 15(2), 121–134 (1999)CrossRefGoogle Scholar
  4. 4.
    Anselma, L., et al.: Towards a comprehensive treatment of repetitions, periodicity and temporal constraints in clinical guidelines. Artif. Intell. Med. 38(2), 171–195 (2006)CrossRefGoogle Scholar
  5. 5.
    Bäumler, S., Balser, M., Dunets, A., Reif, W., Schmitt, J.: Verification of medical guidelines by model checking – a case study. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 219–233. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Bettini, C., De Sibi, R.: Symbolic representation of user-defined time granularities. In: Proceedings of the Sixth International Workshop on Temporal Representation and Reasoning, TIME 1999, pp. 17–28 (1999)Google Scholar
  7. 7.
    Bottrighi, A., et al.: Adopting model checking techniques for clinical guidelines verification. Artif. Intell. Med. 48(1), 1–19 (2010)CrossRefGoogle Scholar
  8. 8.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  9. 9.
    Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artif. Intell. 49(1), 61–95 (1991)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Duftschmid, G., Miksch, S., Gall, W.: Verification of temporal scheduling constraints in clinical practice guidelines. Artif. Intell. Med. 25(2), 93–121 (2002)CrossRefGoogle Scholar
  11. 11.
    Egidi, L., Terenziani, P.: A lattice of classes of user-defined symbolic periodicities. In: Proceedings of the 11th International Symposium on Temporal Representation and Reasoning, TIME 2004, pp. 13–20 (2004)Google Scholar
  12. 12.
    Egidi, L., Terenziani, P.: A mathematical framework for the semantics of symbolic languages representing periodic time. In: Proceedings of the 11th International Symposium on Temporal Representation and Reasoning, TIME 2004, pp. 21–27 (2004)Google Scholar
  13. 13.
    Field, M.J., Lohr, K.N.: Guidelines for Clinical Practice: From Development to Use. National Academies Press, Washington, DC (1992)Google Scholar
  14. 14.
    Fox, J., Johns, N., Rahmanzadeh, A.: Disseminating medical knowledge: the PROforma approach. Artif. Intell. Med. 14(1), 157–182 (1998)CrossRefGoogle Scholar
  15. 15.
    Garber, A.J., et al.: Efficacy of metformin in type II diabetes: results of a double-blind, placebo-controlled, dose-response trial. Am. J. Med. 103(6), 491–507 (1997)CrossRefGoogle Scholar
  16. 16.
    Getoor, L., Taskar, B. (eds.): Introduction to Statistical Relational Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge (2007)Google Scholar
  17. 17.
    Giordano, L., et al.: Model checking for clinical guidelines: an agent-based approach. In: AMIA Annual Symposium Proceedings, vol. 2006, p. 289. American Medical Informatics Association (2006)Google Scholar
  18. 18.
    Giordano, L., et al.: A temporal approach to the specification and verification of interaction protocols. In: WOA, pp. 171–176 (2005)Google Scholar
  19. 19.
    Guthrie, B., et al.: Adapting clinical guidelines to take account of multimorbidity. BMJ 345, e6341 (2012)CrossRefGoogle Scholar
  20. 20.
    Halpern, J.Y., Vardi, M.Y.: Model checking vs. theorem proving: a manifesto. In: Artificial Intelligence and Mathematical Theory of Computation, vol. 212, pp. 151–176. Academic Press, Inc. (1991)Google Scholar
  21. 21.
    Holzmann, G.J.: The model checker spin. IEEE Trans. Softw. Eng. 23(5), 279–295 (1997)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Hommersom, A., Ferreira, N., Lucas, P.J.F.: Integrating logical reasoning and probabilistic chain graphs. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009, Part I. LNCS (LNAI), vol. 5781, pp. 548–563. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Huges, L.D., McMurdo, M.E.T., Guthrie, B.: Guidelines for people not for diseases: the challenges of applying UK clinical guidelines to people with multimorbidity. Age Ageing 42(1), 62–69 (2013)CrossRefGoogle Scholar
  24. 24.
    Kersting, K., De Raedt, L.: Towards combining inductive logic programming with Bayesian networks. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI), vol. 2157, pp. 118–131. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  25. 25.
    Kimmig, A., et al.: On the implementation of the probabilistic logic programming language problog. Theory Pract. Logic Program. (2010)Google Scholar
  26. 26.
    Kosara, R., Miksch, S.: Visualization methods for data analysis and planning in medical applications. Int. J. Med. Inform. 68(1), 141–153 (2002)CrossRefGoogle Scholar
  27. 27.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic symbolic model checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002)Google Scholar
  28. 28.
    Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg (1987)Google Scholar
  29. 29.
    Lucas, P.J.F., et al.: A probabilistic and decision-theoretic approach to the management of infectious disease at the ICU. Artif. Intell. Med. 19(3), 251–279 (2000)CrossRefGoogle Scholar
  30. 30.
    Marcos, M., Balser, M., ten Teije, A., van Harmelen, F., Duelli, C.: Experiences in the formalisation and verification of medical protocols. In: Dojat, M., Keravnou, E.T., Barahona, P. (eds.) AIME 2003. LNCS (LNAI), vol. 2780, pp. 132–141. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  31. 31.
    McMillan, K.L.: Symbolic Model Checking. Springer, Heidelberg (1993)Google Scholar
  32. 32.
    Musen, M.A., et al.: Knowledge engineering for a clinical trial advice system: uncovering errors in protocol specification. Bull. du Cancer 74(291), 296 (1987)Google Scholar
  33. 33.
    Musen, M.A., et al.: EON: a component-based approach to automation of protocol-directed therapy. J. Am. Med. Inform. Assoc. 3(6), 367–388 (1996)CrossRefGoogle Scholar
  34. 34.
    Natarajan, S., Bui, H.H., Tadepalli, P., Kersting, K., Wong, W.-K.: Logical hierarchical hidden markov models for modeling user activities. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 192–209. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  35. 35.
    Overhage, J.M., et al.: A randomized trial of corollary orders to prevent errors of omission. J. Am. Med. Inform. Assoc. 4(5), 364–375 (1997)CrossRefGoogle Scholar
  36. 36.
    Paul, M., et al.: Improving empirical antibiotic treatment using treat, a computerized decision support system: cluster randomized trial. J. Antimicrob. Chemother. 58, 1238–1245 (2006)CrossRefGoogle Scholar
  37. 37.
    Peleg, M., et al.: GLIF3: the evolution of a guideline representation format. In: Proceedings of the AMIA Symposium, p. 645. American Medical Informatics Association (2000)Google Scholar
  38. 38.
    Poole, D.: The independent choice logic and beyond. In: de Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.H. (eds.) Probabilistic ILP 2007. LNCS (LNAI), vol. 4911, pp. 222–243. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  39. 39.
    Poole, D.: The independent choice logic for modelling multiple agents under uncertainty. Artif. Intell. 94(1–2), 7–56 (1997)MATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2), 107–136 (2006)CrossRefGoogle Scholar
  41. 41.
    Sacchi, L., Rognoni, C., Rubrichi, S., Panzarasa, S., Quaglini, S.: From decision to shared-decision: introducing patients’ preferences in clinical decision analysis - a case study in thromboembolic risk prevention. In: Peek, N., Marín Morales, R., Peleg, M. (eds.) AIME 2013. LNCS (LNAI), vol. 7885, pp. 1–10. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  42. 42.
    Shahar, Y.: A framework for knowledge-based temporal abstraction. Artif. Intell. 90(1), 79–133 (1997)MATHCrossRefGoogle Scholar
  43. 43.
    Sherman, E.H., et al.: Using intermediate states to improve the ability of the arden syntax to implement care plans and reuse knowledge. In: Proceedings of the Annual Symposium on Computer Application in Medical Care, p. 238. American Medical Informatics Association (1995)Google Scholar
  44. 44.
    Shu, Y., et al.: Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J. Clin. Invest. 117, 1422–1431 (2007)CrossRefGoogle Scholar
  45. 45.
    Ten Teije, A., et al.: Improving medical protocols by formal methods. Artif. Intell. Med. 36(3), 193–209 (2006)CrossRefGoogle Scholar
  46. 46.
    Terenziani, P., Molino, G., Torchio, M.: A modular approach for representing and executing clinical guidelines. Artif. Intell. Med. 23(3), 249–276 (2001)CrossRefGoogle Scholar
  47. 47.
    Terenziani, P., et al.: Spin model checking for the verification of clinical guidelines. In: ECAI 2006 Workshop on AI Techniques in Healthcare: Evidence-Based Guidelines and Protocols (2006)Google Scholar
  48. 48.
    Thon, I., Landwehr, N., De Raedt, L.: A simple model for sequences of relational state descriptions. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 506–521. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  49. 49.
    Velikova, M., et al.: Improved mammographic cad performance using multi-view information: a Bayesian network framework. Phys. Med. Biol. 54, 1131–1147 (2009)CrossRefGoogle Scholar
  50. 50.
    Vennekens, J., Denecker, M., Bruynooghe, M.: CP-logic: a language of causal probabilistic events and its relation to logic programming. Theory Pract. Logic Program. 9, 245–308 (2009)MATHMathSciNetCrossRefGoogle Scholar
  51. 51.
    Vila, L.: A survey on temporal reasoning in artificial intelligence. AI Commun. 7(1), 4–28 (1994)Google Scholar
  52. 52.
    van der Weijden, T., et al.: Clinical Practice Guidelines And Patient Decision Aids. An Inevitable Relationship. J. Clin. Epidemiol. 65(6), 584–589 (2012)CrossRefGoogle Scholar
  53. 53.
    Weng, C., Kahn, M., Gennari, J.: Temporal knowledge representation for scheduling tasks in clinical trial protocols. In: Proceedings of the AMIA Symposium, p. 879. American Medical Informatics Association (2002)Google Scholar
  54. 54.
    Zalounina, A., et al.: A stochastic model of susceptibility to antibiotic therapy-the effects of cross-resistance and treatment history. Artif. Intell. Med. 40(1), 57–63 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Luca Anselma
    • 1
  • Alessio Bottrighi
    • 2
  • Laura Giordano
    • 2
  • Arjen Hommersom
    • 3
    • 4
  • Gianpaolo Molino
    • 5
  • Stefania Montani
    • 2
  • Paolo Terenziani
    • 2
  • Mauro Torchio
    • 5
  1. 1.Dipartimento di InformaticaUniversitá di TorinoTorinoItaly
  2. 2.DISIT, Computer Science InstituteUniversity of Piemonte OrientaleAlessandriaItaly
  3. 3.Institute for Computing and Information SciencesRadboud UniversityNijmegenThe Netherlands
  4. 4.Faculty of Management, Science and TechnologyOpen UniversityHeerlenThe Netherlands
  5. 5.Azienda Ospedaliera San Giovanni BattistaTorinoItaly

Personalised recommendations