Advances in Computer Games

Advances in Computer Games pp 76-88 | Cite as

Go Complexities

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9525)

Abstract

The game of Go is often said to be exptime-complete. The result refers to classical Go under Japanese rules, but many variants of the problem exist and affect the complexity. We survey what is known on the computational complexity of Go and highlight challenging open problems. We also propose a few new results. In particular, we show that Atari-Go is pspace-complete and that hardness results for classical Go carry over to their Partially Observable variant.

References

  1. 1.
    Auger, D., Teytaud, O.: The frontier of decidability in partially observable recursive games. Int. J. Found. Comput. Sci. 23(7), 1439–1450 (2012)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Cazenave, T., Borsboom, J.: Golois wins Phantom Go tournament. ICGA J. 30(3), 165–166 (2007)Google Scholar
  3. 3.
    Coulom, R.: Efficient selectivity and backup operators in monte-carlo tree search. In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M.J. (eds.) CG 2006. LNCS, vol. 4630, pp. 72–83. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  4. 4.
    Crâsmaru, M.: On the complexity of Tsume-Go. In: van den Herik, H.J., Iida, H. (eds.) CG 1998. LNCS, vol. 1558, p. 222. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  5. 5.
    Crâsmaru, M., Tromp, J.: Ladders are PSPACE-complete. In: Marsland, T., Frank, I. (eds.) CG 2001. LNCS, vol. 2063, p. 241. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  6. 6.
    Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In: Proceedings of the 24th International Conference on Machine Learning, ICML ’07, pp. 273–280. ACM Press, New York (2007)Google Scholar
  7. 7.
    Gelly, S., Wang, Y., Munos, R., Teytaud, O.: Modification of UCT with patterns in Monte-Carlo Go. Rapport de recherche INRIA RR-6062 (2006). http://hal.inria.fr/inria-00117266/en/
  8. 8.
    Hearn, R.A., Demaine, E.D.: Games, Puzzles, and Computation. A K Peters, Cambridge (2009)MATHGoogle Scholar
  9. 9.
    Lichtenstein, D., Sipser, M.: Go is polynomial-space hard. J. ACM 27(2), 393–401 (1980)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Robson, J.M.: The complexity of Go. In: IFIP Congress, pp. 413–417 (1983)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Abdallah Saffidine
    • 1
  • Olivier Teytaud
    • 2
  • Shi-Jim Yen
    • 3
  1. 1.CSEThe University of New South WalesSydneyAustralia
  2. 2.Tao team, Inria, LRIUniversity of Paris-SudOrsayFrance
  3. 3.Ailab, CSIENational Dong Hwa UniversityShoufeng TownshipTaiwan

Personalised recommendations