Advertisement

The Corn Smut Fungus Ustilago maydis as an Alternative Expression System for Biopharmaceuticals

  • Parveen Sarkari
  • Michael Feldbrügge
  • Kerstin SchipperEmail author
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Protein pharmaceuticals constitute a heavily increasing market. Thus, there is an urgent need to efficiently produce the molecules of interest. In a quest to develop a novel protein production system, the corn smut fungus Ustilago maydis was recently established as an expression platform. Inspired by the discovery of an unconventional secretion pathway used by the fungus to secrete the endochitinase Cts1, this eukaryotic system was employed to export heterologous proteins using Cts1 as a carrier. U. maydis displays several features that indicate a great potential for its utilization in biotechnology. However, as seen in other fungi, some bottlenecks were also identified such as limiting transcriptional levels and proteolytic degradation. This initially led to low amounts of secreted proteins. Therefore, the expression system was optimized by improving expression levels and reducing proteolytic degradation using a single-chain antibody as a proof-of-principle. Hence, optimized U. maydis strains are now on a promising way to be exploited for different biotechnological applications.

Keywords

Ustilago maydis Smut Single-chain antibodies Unconventional secretion Protease 

References

  1. Andersen DC, Krummen L. Recombinant protein expression for therapeutic applications. Curr Opin Biotechnol. 2002;13(2):117–23.CrossRefGoogle Scholar
  2. Archer D, Jeenes D, Mackenzie D. Strategies for improving heterologous protein production from filamentous fungi. Antonie Van Leeuwenhoek. 1994;65(3):245–50.CrossRefGoogle Scholar
  3. Baumann S, Pohlmann T, Jungbluth M, Brachmann A, Feldbrügge M. Kinesin-3 and dynein mediate microtubule-dependent co-transport of mRNPs and endosomes. J Cell Sci. 2012;125(11):2740–52.CrossRefGoogle Scholar
  4. Baumann S, König J, Koepke J, Feldbrügge M. Endosomal transport of septin mRNA and protein indicates local translation on endosomes and is required for correct septin filamentation. EMBO Rep. 2014;15(1):94–102.CrossRefGoogle Scholar
  5. Becht P, Vollmeister E, Feldbrügge M. Role for RNA-binding proteins implicated in pathogenic development of Ustilago maydis. Eukaryot Cell. 2005;4(1):121–33.CrossRefGoogle Scholar
  6. Becht P, König J, Feldbrügge M. The RNA-binding protein Rrm4 is essential for polarity in Ustilago maydis and shuttles along microtubules. J Cell Sci. 2006;119(23):4964–73.CrossRefGoogle Scholar
  7. Berlec A, Štrukelj B. Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells. J Ind Microbiol Biotechnol. 2013;40(3-4):257–74.CrossRefGoogle Scholar
  8. Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee S-M, et al. Single-chain antigen-binding proteins. Science. 1988;242(4877):423–6.CrossRefGoogle Scholar
  9. Bölker M. Ustilago maydis–a valuable model system for the study of fungal dimorphism and virulence. Microbiology. 2001;147(6):1395–401.CrossRefGoogle Scholar
  10. Brachmann A, Weinzierl G, Kämper J, Kahmann R. Identification of genes in the bW/bE regulatory cascade in Ustilago maydis. Mol Microbiol. 2001;42(4):1047–63.CrossRefGoogle Scholar
  11. Brachmann A, König J, Julius C, Feldbrügge M. A reverse genetic approach for generating gene replacement mutants in Ustilago maydis. Mol Genet Genomics. 2004;272(2):216–26.Google Scholar
  12. Brefort T, Doehlemann G, Mendoza-Mendoza A, Reissmann S, Djamei A, Kahmann R. Ustilago maydis as a pathogen. Annu Rev Phytopathol. 2009;47:423–45.CrossRefGoogle Scholar
  13. Broomfield PE, Hargreaves JA. A single amino-acid change in the iron-sulphur protein subunit of succinate dehydrogenase confers resistance to carboxin in Ustilago maydis. Curr Genet. 1992;22(2):117–21.CrossRefGoogle Scholar
  14. Buerth C, Kovacic F, Stock J, Terfrüchte M, Wilhelm S, Jaeger K-E, et al. Uml2 is a novel CalB-type lipase of Ustilago maydis with phospholipase A activity. Appl Microbiol Biotechnol. 2014;98(11):4963–73.CrossRefGoogle Scholar
  15. Carter PJ. Potent antibody therapeutics by design. Nat Rev Immunol. 2006;6(5):343–57.CrossRefGoogle Scholar
  16. Çelik E, Çalık P. Production of recombinant proteins by yeast cells. Biotechnol Adv. 2012;30(5):1108–18.CrossRefGoogle Scholar
  17. Cleves AE. Protein transport: the nonclassical ins and outs. Curr Biol. 1997;7(5):R318–R20.CrossRefGoogle Scholar
  18. Conesa A, Punt PJ, van Luijk N, van den Hondel CA. The secretion pathway in filamentous fungi: a biotechnological view. Fungal Genet Biol. 2001;33(3):155–71.CrossRefGoogle Scholar
  19. Corchero JL, Gasser B, Resina D, Smith W, Parrilli E, Vázquez F, et al. Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics. Biotechnol Adv. 2013;31(2):140–53.CrossRefGoogle Scholar
  20. de Marco A. Biotechnological applications of recombinant single-domain antibody fragments. Microb Cell Fact. 2011;10(1):44–57.CrossRefGoogle Scholar
  21. De Pourcq K, De Schutter K, Callewaert N. Engineering of glycosylation in yeast and other fungi: current state and perspectives. Appl Microbiol Biotechnol. 2010;87(5):1617–31.CrossRefGoogle Scholar
  22. Dean R, Van Kan JA, Pretorius ZA, Hammond‐Kosack KE, Di Pietro A, Spanu PD, et al. The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol. 2012;13(4):414–30.CrossRefGoogle Scholar
  23. Demain AL, Vaishnav P. Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv. 2009;27(3):297–306.Google Scholar
  24. Djamei A, Kahmann R. Ustilago maydis: dissecting the molecular interface between pathogen and plant. PLoS Pathog. 2012;8(11): e1002955.CrossRefGoogle Scholar
  25. Engler C, Kandzia R, Marillonnet S. A one pot, one step, precision cloning method with high throughput capability. PLoS One. 2008;3(11): e3647.CrossRefGoogle Scholar
  26. Evan GI, Lewis GK, Ramsay G, Bishop JM. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol. 1985;5(12):3610–6.CrossRefGoogle Scholar
  27. Feldbrügge M, Kellner R, Schipper K. The biotechnological use and potential of plant pathogenic smut fungi. Appl Microbiol Biotechnol. 2013;97(8):3253–65.CrossRefGoogle Scholar
  28. Fernández-Álvarez A, Elías-Villalobos A, Ibeas JI. Protein glycosylation in the phytopathogen Ustilago maydis: From core oligosaccharide synthesis to the ER glycoprotein quality control system, a genomic analysis. Fungal Genet Biol. 2010;47(9):727–35.CrossRefGoogle Scholar
  29. Flor-Parra I, Vranes M, Kämper J, Pérez-Martín J. Biz1, a zinc finger protein required for plant invasion by Ustilago maydis, regulates the levels of a mitotic cyclin. Plant Cell. 2006;18(9):2369–87.CrossRefGoogle Scholar
  30. Gerngross TU. Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nat Biotechnol. 2004;22(11):1409–14.CrossRefGoogle Scholar
  31. Göhre V, Vollmeister E, Bölker M, Feldbrügge M. Microtubule-dependent membrane dynamics in Ustilago maydis. Commun Integr Biol. 2012;5(5):485–90.CrossRefGoogle Scholar
  32. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hammers C, Songa EB, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363(6428):446–8.CrossRefGoogle Scholar
  33. Hamilton SR, Gerngross TU. Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr Opin Biotechnol. 2007;18(5):387–92.CrossRefGoogle Scholar
  34. Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, et al. Humanization of yeast to produce complex terminally sialylated glycoproteins. Science. 2006;313(5792):1441–3.CrossRefGoogle Scholar
  35. Hartmann HA, Krüger J, Lottspeich F, Kahmann R. Environmental signals controlling sexual development of the corn smut fungus Ustilago maydis through the transcriptional regulator Prf1. Plant Cell. 1999;11(7):1293–305.CrossRefGoogle Scholar
  36. He M, He Y, Luo Q, Wang M. From DNA to protein: No living cells required. Process Biochem. 2011;46(3):615–20.CrossRefGoogle Scholar
  37. Hewald S, Linne U, Scherer M, Marahiel MA, Kämper J, Bölker M. Identification of a gene cluster for biosynthesis of mannosylerythritol lipids in the basidiomycetous fungus Ustilago maydis. Appl Environ Microbiol. 2006;72(8):5469–77.CrossRefGoogle Scholar
  38. Higuchi Y, Ashwin P, Roger Y, Steinberg G. Early endosome motility spatially organizes polysome distribution. J Cell Biol. 2014;204(3):343–57.CrossRefGoogle Scholar
  39. Holliday R. Early studies on recombination and DNA repair in Ustilago maydis. DNA Repair. 2004;3(6):671–82.CrossRefGoogle Scholar
  40. Holliday R. Ustilago maydis. Bacteria, Bacteriophages, and Fungi. Berlin: Springer; 1974. p. 575–95.CrossRefGoogle Scholar
  41. Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol. 2005;23(9):1126–36.CrossRefGoogle Scholar
  42. Houdebine L-M. Production of pharmaceutical proteins by transgenic animals. Comp Immunol Microbiol Infect Dis. 2009;32(2):107–21.CrossRefGoogle Scholar
  43. Huang Jr C, Lin H, Yang X. Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol. 2012;39(3):383–99.CrossRefGoogle Scholar
  44. Idiris A, Tohda H, Bi K-W, Isoai A, Kumagai H, Giga-Hama Y. Enhanced productivity of protease-sensitive heterologous proteins by disruption of multiple protease genes in the fission yeast Schizosaccharomyces pombe. Appl Microbiol Biotechnol. 2006;73(2):404–20.CrossRefGoogle Scholar
  45. Idiris A, Tohda H, Kumagai H, Takegawa K. Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol. 2010;86(2):403–17.CrossRefGoogle Scholar
  46. Iturriaga G, Jefferson RA, Bevan MW. Endoplasmic reticulum targeting and glycosylation of hybrid proteins in transgenic tobacco. Plant Cell. 1989;1(3):381–90.CrossRefGoogle Scholar
  47. Kämper J. A PCR-based system for highly efficient generation of gene replacement mutants in Ustilago maydis. Mol Genet Genomics. 2004;271(1):103–10.CrossRefGoogle Scholar
  48. Kämper J, Kahmann R, Bölker M, Ma L-J, Brefort T, Saville BJ, et al. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature. 2006;444(7115):97–101.CrossRefGoogle Scholar
  49. Keon JP, White GA, Hargreaves JA. Isolation, characterization and sequence of a gene conferring resistance to the systemic fungicide carboxin from the maize smut pathogen Ustilago maydis. Curr Genet. 1991;19(6):475–81.Google Scholar
  50. Khrunyk Y, Münch K, Schipper K, Lupas AN, Kahmann R. The use of FLP-mediated recombination for the functional analysis of an effector gene family in the biotrophic smut fungus Ustilago maydis. New Phytol. 2010;187(4):957–68.CrossRefGoogle Scholar
  51. Klement T, Milker S, Jäger G, Grande PM, Domínguez de María P, Büchs J. Biomass pretreatment affects Ustilago maydis in producing itaconic acid. Microb Cell Fact. 2012;11:43.Google Scholar
  52. Koepke J, Kaffarnik F, Haag C, Zarnack K, Luscombe NM, König J, et al. The RNA-binding protein Rrm4 is essential for efficient secretion of endochitinase Cts1. Mol Cell Proteomics. 2011;10(12):M111.011213.CrossRefGoogle Scholar
  53. Kojic M, Holloman WK. Shuttle vectors for genetic manipulations in Ustilago maydis. Can J Microbiol. 2000;46(4):333–8.CrossRefGoogle Scholar
  54. Kojic M, Sutherland JH, Pérez-Martín J, Holloman WK. Initiation of meiotic recombination in Ustilago maydis. Genetics. 2013;195(4):1231–40.CrossRefGoogle Scholar
  55. Kück U, Hoff B. New tools for the genetic manipulation of filamentous fungi. Appl Microbiol Biotechnol. 2010;86(1):51–62.CrossRefGoogle Scholar
  56. Li H, Sethuraman N, Stadheim TA, Zha D, Prinz B, Ballew N, et al. Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol. 2006;24(2):210–5.CrossRefGoogle Scholar
  57. Lilie H, Schwarz E, Rudolph R. Advances in refolding of proteins produced in E. coli. Curr Opin Biotechnol. 1998;9(5):497–501.CrossRefGoogle Scholar
  58. Ma JK, Drake PM, Christou P. The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet. 2003;4(10):794–805.CrossRefGoogle Scholar
  59. Maassen N, Panakova M, Wierckx N, Geiser E, Zimmermann M, Bölker M, et al. Influence of carbon and nitrogen concentration on itaconic acid production by the smut fungus Ustilago maydis. Eng Life Sci. 2014;14(2):129–34.CrossRefGoogle Scholar
  60. Malhotra V. Unconventional protein secretion: an evolving mechanism. EMBO J. 2013;32(12):1660–4.CrossRefGoogle Scholar
  61. Mattanovich D, Branduardi P, Dato L, Gasser B, Sauer M, Porro D. Recombinant protein production in yeasts. Methods Mol Biol. 2012;824:329–58.CrossRefGoogle Scholar
  62. Mergulhão F, Summers D, Monteiro G. Recombinant protein secretion in Escherichia coli. Biotechnol Adv. 2005;23(3):177–202.CrossRefGoogle Scholar
  63. Moir D, Mao J. Protein secretion systems in microbial and mammalian cells. Bioprocess Technol. 1990;9:67–94.Google Scholar
  64. Mueller O, Kahmann R, Aguilar G, Trejo-Aguilar B, Wu A, de Vries RP. The secretome of the maize pathogen Ustilago maydis. Fungal Genet Biol. 2008;45:S63–70.CrossRefGoogle Scholar
  65. Nelson AL, Reichert JM. Development trends for therapeutic antibody fragments. Nat Biotechnol. 2009;27(4):331.CrossRefGoogle Scholar
  66. Newstead S, Kim H, von Heijne G, Iwata S, Drew D. High-throughput fluorescent-based optimization of eukaryotic membrane protein overexpression and purification in Saccharomyces cerevisiae. Proc Natl Acad Sci. 2007;104(35):13936–41.CrossRefGoogle Scholar
  67. Ni Y, Chen R. Extracellular recombinant protein production from Escherichia coli. Biotechnol Lett. 2009;31(11):1661–70.CrossRefGoogle Scholar
  68. Nickel W. Unconventional secretory routes: direct protein export across the plasma membrane of mammalian cells. Traffic. 2005;6(8):607–14.CrossRefGoogle Scholar
  69. Nickel W. Pathways of unconventional protein secretion. Curr Opin Biotechnol. 2010;21(5):621–6.CrossRefGoogle Scholar
  70. Nickel W. The unconventional secretory machinery of fibroblast growth factor 2. Traffic. 2011;12(7):799–805.CrossRefGoogle Scholar
  71. Nickel W, Rabouille C. Mechanisms of regulated unconventional protein secretion. Nat Rev Mol Cell Biol. 2009;10(2):148–55.CrossRefGoogle Scholar
  72. Parente D, Raucci G, D'Alatri L, d'Estais G, Novelli S, Pacilli A, et al. Overproduction of soluble, extracellular cytotoxin α-sarcin in Escherichia coli. Mol Biotechnol. 1998;9(2):99–106.CrossRefGoogle Scholar
  73. Punt PJ, van Biezen N, Conesa A, Albers A, Mangnus J, van den Hondel C. Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol. 2002;20(5):200–6.CrossRefGoogle Scholar
  74. Rabouille C, Malhotra V, Nickel W. Diversity in unconventional protein secretion. J Cell Sci. 2012;125(22):5251–5.CrossRefGoogle Scholar
  75. Roque ACA, Lowe CR, Taipa MÂ. Antibodies and genetically engineered related molecules: production and purification. Biotechnol Prog. 2004;20(3):639–54.CrossRefGoogle Scholar
  76. Sarkari P, Reindl M, Stock J, Müller O, Kahmann R, Feldbrügge M, et al. Improved expression of single-chain antibodies in Ustilago maydis. J Biotechnol. 2014;191:165–75.CrossRefGoogle Scholar
  77. Schuster M, Lipowsky R, Assmann M-A, Lenz P, Steinberg G. Transient binding of dynein controls bidirectional long-range motility of early endosomes. Proc Natl Acad Sci. 2011a;108(9):3618–23.CrossRefGoogle Scholar
  78. Schuster M, Kilaru S, Fink G, Collemare J, Roger Y, Steinberg G. Kinesin-3 and dynein cooperate in long-range retrograde endosome motility along a nonuniform microtubule array. Mol Biol Cell. 2011b;22(19):3645–57.CrossRefGoogle Scholar
  79. Schwarz CK, Landsberg CD, Lenders MH, Smits SH, Schmitt L. Using an E. coli Type 1 secretion system to secrete the mammalian, intracellular protein IFABP in its active form. J Biotechnol. 2012;159(3):155–61.CrossRefGoogle Scholar
  80. Sørensen HP, Mortensen KK. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol. 2005;115(2):113–28.CrossRefGoogle Scholar
  81. Spadiut O, Capone S, Krainer F, Glieder A, Herwig C. Microbials for the production of monoclonal antibodies and antibody fragments. Trends Biotechnol. 2014;32(1):54–60.CrossRefGoogle Scholar
  82. Spellig T, Bottin A, Kahmann R. Green fluorescent protein (GFP) as a new vital marker in the phytopathogenic fungus Ustilago maydis. Mol Gen Genet. 1996;252(5):503–9.Google Scholar
  83. Steinberg G. Tracks for traffic: microtubules in the plant pathogen Ustilago maydis. New Phytol. 2007;174(4):721–33.CrossRefGoogle Scholar
  84. Steinberg G. Endocytosis and early endosome motility in filamentous fungi. Curr Opin Microbiol. 2014;20:10–8.CrossRefGoogle Scholar
  85. Steinberg G, Perez-Martin J. Ustilago maydis, a new fungal model system for cell biology. Trends Cell Biol. 2008;18(2):61–7.CrossRefGoogle Scholar
  86. Stock J, Sarkari P, Kreibich S, Brefort T, Feldbrügge M, Schipper K. Applying unconventional secretion of the endochitinase Cts1 to export heterologous proteins in Ustilago maydis. J Biotechnol. 2012;161(2):80–91.CrossRefGoogle Scholar
  87. Swartz JR. Advances in Escherichia coli production of therapeutic proteins. Curr Opin Biotechnol. 2001;12(2):195–201.CrossRefGoogle Scholar
  88. Teichmann B, Linne U, Hewald S, Marahiel MA, Bölker M. A biosynthetic gene cluster for a secreted cellobiose lipid with antifungal activity from Ustilago maydis. Mol Microbiol. 2007;66(2):525–33.CrossRefGoogle Scholar
  89. Terfrüchte M, Jöhnk B, Fajardo-Somera R, Braus GH, Riquelme M, Schipper K, et al. Establishing a versatile Golden Gate cloning system for genetic engineering in fungi. Fungal Genet Biol. 2014;62:1–10.CrossRefGoogle Scholar
  90. Twyman MR, Schillberg S, Fischer R. Optimizing the yield of recombinant pharmaceutical proteins in plants. Curr Pharm Des. 2013;19(31):5486–94.CrossRefGoogle Scholar
  91. van den Hombergh JP, van de Vondervoort PJ, Fraissinet-Tachet L, Visser J. Aspergillus as a host for heterologous protein production: the problem of proteases. Trends Biotechnol. 1997a;15(7):256–63.CrossRefGoogle Scholar
  92. van den Hombergh JP, Gelpke MDS, van de Vondervoort PJ, Buxton FP, Visser J. Disruption of three acid proteases in Aspergillus niger—effects on protease spectrum, intracellular proteolysis, and degradation of target proteins. Eur J Biochem. 1997b;247(2):605–13.CrossRefGoogle Scholar
  93. Van den Hondel C, Punt PJ, van Gorcom RF. Heterologous gene expression in filamentous fungi. In: Bennett JW, Lasure LL, editors. More gene manipulations in fungi. San Diego: Academic Press; 1991. p. 396–428.CrossRefGoogle Scholar
  94. Voll A, Klement T, Gerhards G, Büchs J, Marquardt W. Metabolic modelling of itaconic acid fermentation with Ustilago maydis. Chem Eng Trans. 2012;27:367–72.Google Scholar
  95. Vollmeister E, Feldbrügge M. Posttranscriptional control of growth and development in Ustilago maydis. Curr Opin Microbiol. 2010;13(6):693–9.CrossRefGoogle Scholar
  96. Vollmeister E, Schipper K, Feldbrügge M. Microtubule-dependent mRNA transport in the model microorganism Ustilago maydis. RNA Biol. 2012a;9(3):261–8.CrossRefGoogle Scholar
  97. Vollmeister E, Schipper K, Baumann S, Haag C, Pohlmann T, Stock J, et al. Fungal development of the plant pathogen Ustilago maydis. FEMS Microbiol Rev. 2012b;36(1):59–77.CrossRefGoogle Scholar
  98. Waegeman H, Soetaert W. Increasing recombinant protein production in Escherichia coli through metabolic and genetic engineering. J Ind Microbiol Biotechnol. 2011;38(12):1891–910.CrossRefGoogle Scholar
  99. Walsh G. Biopharmaceutical benchmarks 2010. Nat Biotechnol. 2010;28(9):917.CrossRefGoogle Scholar
  100. Wang L, Ridgway D, Gu T, Moo-Young M. Bioprocessing strategies to improve heterologous protein production in filamentous fungal fermentations. Biotechnol Adv. 2005;23(2):115–29.CrossRefGoogle Scholar
  101. Ward OP. Production of recombinant proteins by filamentous fungi. Biotechnol Adv. 2012;30(5):1119–39.CrossRefGoogle Scholar
  102. Wörn A, Plückthun A. Stability engineering of antibody single-chain Fv fragments. J Mol Biol. 2001;305(5):989–1010.CrossRefGoogle Scholar
  103. Wurm FM. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol. 2004;22(11):1393–8.CrossRefGoogle Scholar
  104. Yoon J. Disruption of ten protease genes in the filamentous fungus Aspergillus oryzae highly improves production of heterologous proteins. Appl Microbiol Biotechnol. 2011;89(3):747–59.CrossRefGoogle Scholar
  105. Yoon J, Kimura S, Maruyama J-I, Kitamoto K. Construction of quintuple protease gene disruptant for heterologous protein production in Aspergillus oryzae. Appl Microbiol Biotechnol. 2009;82(4):691–701.CrossRefGoogle Scholar
  106. Yu EY, Kojic M, Holloman WK, Lue NF. Brh2 and Rad51 promote telomere maintenance in Ustilago maydis, a new model system of DNA repair proteins at telomeres. DNA Repair. 2013;12(7):472–9.CrossRefGoogle Scholar
  107. Zarnack K, Feldbrügge M. mRNA trafficking in fungi. Mol Genet Genomics. 2007;278(4):347–59.CrossRefGoogle Scholar
  108. Zhang G, Brokx S, Weiner JH. Extracellular accumulation of recombinant proteins fused to the carrier protein YebF in Escherichia coli. Nat Biotechnol. 2006;24(1):100–4.CrossRefGoogle Scholar
  109. Zhu J. Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv. 2012;30(5):1158–70.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Parveen Sarkari
    • 1
  • Michael Feldbrügge
    • 2
    • 3
  • Kerstin Schipper
    • 2
    • 3
    Email author
  1. 1.Heinrich Heine University Düsseldorf, Institute for Microbiology, Heinrich Heine University DüsseldorfDüsseldorfGermany
  2. 2.Heinrich Heine University Düsseldorf, Institute for MicrobiologyDüsseldorfGermany
  3. 3.Bioeconomy Science Center (BioSC)JülichGermany

Personalised recommendations