Applications and Benefits of Thermophilic Microorganisms and Their Enzymes for Industrial Biotechnology

  • Eleni GomesEmail author
  • Angelica Rodrigues de Souza
  • Guillermo Ladino Orjuela
  • Roberto Da Silva
  • Tássio Brito de Oliveira
  • Andre Rodrigues
Part of the Fungal Biology book series (FUNGBIO)


Thermophilic and thermotolerant microorganisms are of important economic value due to their ability to produce thermostable extracellular enzymes which have important biotechnological applications. It is known that thermophilic activities are generally associated with protein thermostability. Thus, proteins produced by thermophiles tend to be more thermostable than their mesophilic counterparts. The mechanisms of intrinsic thermostability of the protein that results in the molecular rigidity are related to a number of hydrogen and disulfide bonds, salt bridges, presence of hydrophobic amino acids and the packing of external residues. The advantage of the use of thermostable enzymes for conducting biotechnological processes at elevated temperatures are: reducing the risk of contamination by mesophilic microorganisms; decreasing the viscosity of the reaction medium; increasing the bioavailability and solubility of organic compounds; increasing the diffusion coefficient of substrates and products resulting in higher reaction rates. Several cellulases, xylanases and pectinases have been applied in biotechnological processes such as biobleaching of paper pulp, production of animal feed, production of fermentable sugars for obtaining biofuel from cellulosic wastes, fruit juice extraction and clarification, refinement of vegetable fibers, degumming of natural fibers, curing of coffee, cocoa and tobacco and also for waste-water treatment. The thermostable enzymes are produced directly from native microorganisms but, in the majority of the industrial processes, the heterologous expression the enzyme is carrying out. Here, we discuss thermophilic microorganisms and their thermostable enzyme involved with plant material degradations and the prokaryotic and eukaryotic systems for heterologous expression of those enzymes.


Thermophilic fungi Thermostable enzymes Heterologous protein Pectinases Cellulase Xylanase 


  1. Açik E. Effects of carbon sources and feeding strategies on human growth hormone production by metabolically engineered Pichia pastoris. Ankara: Middle East Technical University; 2009.Google Scholar
  2. Ahn K-Y, Song J-A, Han K-Y, Park J-S, Seo H-S, Lee J. Heterologous protein expression using a novel stress-responsive protein of E. coli RpoA as fusion expression partner. Enzyme Microb Technol. 2007;41:859–66.
  3. Aleksenko A, Clutterbuck AJ. Autonomous plasmid replication in Aspergillus nidulans: AMA1 and MATE elements. Fungal Genet Biol. 1997;21:373–87.
  4. Alkorta I, Garbisu C, Llama MJ, Serra JL. Industrial applications of pectic enzymes: a review. Process Biochem. 1998;33:21–8.
  5. Ando S, Ishida H, Kosugi Y, Ishikawa K. Hyperthermostable endoglucanase from Pyrococcus horikoshii. Appl Environ Microbiol. 2002;68:430–3. doi: 10.1128/aem.68.1.430-433.2002.CrossRefGoogle Scholar
  6. Anjana Devi N, Appu Rao AG. Fractionation, purification, and preliminary characterization of polygalacturonases produced by Aspergillus carbonarius. Enzyme Microb Technol. 1996;18:59–65.
  7. Annamalai N, Rajeswari MV, Elayaraja S, Balasubramanian T. Thermostable, haloalkaline cellulase from Bacillus halodurans CAS 1 by conversion of lignocellulosic wastes. Carbohydr Polym. 2013;94:409–15.
  8. Arifoğlu N, Ögel ZB. Avicel-adsorbable endoglucanase production by the thermophilic fungus Scytalidium thermophilum type culture Torula thermophila. Enzyme Microb Technol. 2000;27:560–9.
  9. Arthur H, Watson K. Thermal adaptation in yeast: growth temperatures, membrane lipid, and cytochrome composition of psychrophilic, mesophilic, and thermophilic yeasts. J Bacteriol. 1976;128:56–68.
  10. Awram P, Smit J. The Caulobacter crescentus paracrystalline s-layer protein is secreted by an ABC transporter (type I) secretion apparatus. J Bacteriol. 1998;180:3062–9.
  11. Baffi M, Tobal T, Lago J, Boscolo M, Gomes E, Da-Silva R. Wine aroma improvement using a β-glucosidase preparation from Aureobasidium pullulans. Appl Biochem Biotechnol. 2013;169:493–501. doi: 10.1007/s12010-012-9991-2.CrossRefGoogle Scholar
  12. Bajpai P. Purification of xylanases. In: Bajpai P, editor. Xylanolytic enzymes. Amsterdam: Academic; 2014. p. 53–61.CrossRefGoogle Scholar
  13. Bakalova NG, Petrova SD, Atev AP, Bhat MK, Kolev DN. Biochemical and catalytic properties of endo-1,4-β-xylanases from Thermomyces lanuginosus (wild and mutant strains). Biotechnol Lett. 2002;24:1167–72. doi: 10.1023/A:1016183002774.CrossRefGoogle Scholar
  14. Balasubramanian N, Juliet GA, Srikalaivani P, Lalithakumari D. Release and regeneration of protoplasts from the fungus Trichothecium roseum. Can J Microbiol. 2003;49:263–8. doi: 10.1139/w03-034.CrossRefGoogle Scholar
  15. Barense RI, Chellegatti MAdSC, Fonseca MJV, Said S. Partial purification and characterization of exopolygalacturonase II and III of Penicillium frequentans. Braz J Microbiol. 2001;32:327–30.
  16. Barnard GC, Henderson GE, Srinivasan S, Gerngross TU. High level recombinant protein expression in Ralstonia eutropha using T7 RNA polymerase based amplification. Protein Expr Purif. 2004;38:264–71.
  17. Ben Mabrouk S, Zouari Ayadi D, Ben Hlima H, Bejar S. Thermostability improvement of maltogenic amylase MAUS149 by error prone PCR. J Biotechnol. 2013;168:601–6.
  18. Berlemont R, Gerday C. 1.18—Extremophiles. In: Moo-Young M, editor. Comprehensive biotechnology. 2nd ed. Burlington: Academic; 2011. p. 229–42.CrossRefGoogle Scholar
  19. Bhalla A, Bischoff KM, Uppugundla N, Balan V, Sani RK. Novel thermostable endo-xylanase cloned and expressed from bacterium Geobacillus sp. WSUCF1. Bioresour Technol. 2014;165:314–8.
  20. Bok J-D, Yernool DA, Eveleigh DE. Purification, characterization, and molecular analysis of thermostable cellulases CelA and CelB from thermotoga neapolitana. Appl Environ Microbiol. 1998;64:4774–81.
  21. Bourdichon F, Casaregola S, Farrokh C, Frisvad CJ, Gerds ML, Hammes WP, Harnett J, Huys G, Laulund S, Ouwehand A, Powell IB, Prajapati JB, Set Y, Schure FT, Van Boven A, Vankerckhoven V, Zgoda A, Tuijtelaars S, Hansen EB. Food fermentations: microorganisms with technological beneficial use. Int J Food Microbiol. 2012;154:87–97.CrossRefGoogle Scholar
  22. Brawner ME. Advances in heterologous gene expression by Streptomyces. Curr Opin Biotechnol. 1994;5:475–81.
  23. Breccia JD, Siñeriz F, Baigorí MD, Castro GR, Hatti-Kaul R. Purification and characterization of a thermostable xylanase from Bacillus amyloliquefaciens. Enzyme Microb Technol. 1998;22:42–9.
  24. Bronnenmeier K, Kern A, Liebl W, Staudenbauer WL. Purification of Thermotoga maritima enzymes for the degradation of cellulosic materials. Appl Environl Microbiol. 1995;61:1399–407.
  25. Brown JS, Aufauvre-Brown A, Holden DW. Insertional mutagenesis of Aspergillus fumigatus. Mol Gen Genet. 1998;259:327–35. doi: 10.1007/s004380050819.CrossRefGoogle Scholar
  26. Bruins M, Janssen AM, Boom R. Thermozymes and their applications. Appl Biochem Biotechnol. 2001;90:155–86. doi: 10.1385/ABAB:90:2:155.CrossRefGoogle Scholar
  27. Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas PJ. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J. 1995;14:3206–14.
  28. Cain JA, Solis N, Cordwell SJ. Beyond gene expression: the impact of protein post-translational modifications in bacteria. J Proteomics. 2014;97:265–86.
  29. Campbell JL, Richardson CC, Studier FW. Genetic recombination and complementation between bacteriophage T7 and cloned fragments of T7 DNA. Proc Natl Acad Sci U S A. 1978;75:2276–80. doi: 10.1073/pnas.75.5.2276.CrossRefGoogle Scholar
  30. Cannio R, Di Prizito N, Rossi M, Morana A. A xylan-degrading strain of Sulfolobus solfataricus: isolation and characterization of the xylanase activity. Extremophiles. 2004;8:117–24. doi: 10.1007/s00792-003-0370-3.CrossRefGoogle Scholar
  31. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009;37:D233–8. doi: 10.1093/nar/gkn663.CrossRefGoogle Scholar
  32. Castro AMD, Pereira Jr N. Produção, propriedades e aplicação de celulases na hidrólise de resíduos agroindustriais. Quím Nova. 2010;33:181–8.
  33. Cereghino JL, Cregg JM. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev. 2000;24:45–66. doi: 10.1111/j.1574-6976.2000.tb00532.x.CrossRefGoogle Scholar
  34. Chakraborty BN, Patterson NA, Kapoor M. An electroporation-based system for high-efficiency transformation of germinated conidia of filamentous fungi. Can J Microbiol. 1991;37:858–63. doi: 10.1139/m91-147.CrossRefGoogle Scholar
  35. Chellegatti MADSC, Fonseca MJV, Said S. Purification and partial characterization of exopolygalacturonase I from Penicillium frequentans. Microbiol Res. 2002;157:19–24.
  36. Collins T, Gerday C, Feller G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev. 2005;29:3–23. 10.1016/j.femsre.2004.06.005.
  37. Coughlan MP. The properties of fungal and bacterial cellulases with comment on their production and application. Biotechnol Genet Eng Rev. 1985;3:39–110.CrossRefGoogle Scholar
  38. Daegelen P, Studier FW, Lenski RE, Cure S, Kim JF. Tracing ancestors and relatives of Escherichia coli B, and the derivation of B strains REL606 and BL21(DE3). J Mol Biol. 2009;394:634–43. doi: 10.1016/j.jmb.2009.09.022.CrossRefGoogle Scholar
  39. Damásio ARDL, Silva TM, Almeida FBDR, Squina FM, Ribeiro DA, Leme AFP, Segato F, Prade RA, Jorge JA, Terenzi HF, Polizeli MDLTM. Heterologous expression of an Aspergillus niveus xylanase GH11 in Aspergillus nidulans and its characterization and application. Process Biochem. 2011;46:1236–42.
  40. Damásio ARL, Rubio MV, Oliveira LC, Segato F, Dias BA, Citadini AP, Paixão DA, Squina FM. Understanding the function of conserved variations in the catalytic loops of fungal glycoside hydrolase family 12. Biotechnol Bioeng. 2014;111:1494–505. doi: 10.1002/bit.25209.CrossRefGoogle Scholar
  41. Damaso MCT, Almeida MS, Kurtenbach E, Martins OB, Pereira N, Andrade CMMC, Albano RM. Optimized expression of a thermostable xylanase from Thermomyces lanuginosus in Pichia pastoris. Appl Environ Microbiol. 2003;69:6064–72. doi: 10.1128/aem.69.10.6064-6072.2003.CrossRefGoogle Scholar
  42. Damez C, Bouquillon S, Harakat D, Hénin F, Muzart J, Pezron I, Komunjer L. Alkenyl and alkenoyl amphiphilic derivatives of d-xylose and their surfactant properties. Carbohydr Res. 2007;342:154–62.
  43. de Marco A, De Marco V. Bacteria co-transformed with recombinant proteins and chaperones cloned in independent plasmids are suitable for expression tuning. J Biotechnol. 2004;109:45–52.
  44. de Oliveira T, Gomes E, Rodrigues A. Thermophilic fungi in the new age of fungal taxonomy. Extremophiles. 2015;19:31–7. doi: 10.1007/s00792-014-0707-0.CrossRefGoogle Scholar
  45. Delabona PDS, Cota J, Hoffmam ZB, Paixão DAA, Farinas CS, Cairo JPLF, Lima DJ, Squina FM, Ruller R, Pradella JGDC. Understanding the cellulolytic system of Trichoderma harzianum P49P11 and enhancing saccharification of pretreated sugarcane bagasse by supplementation with pectinase and α-l-arabinofuranosidase. Bioresour Technol. 2013;131:500–7.
  46. Demain AL, Vaishnav P. Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv. 2009;27:297–306.
  47. Derman AI, Prinz WA, Belin D, Beckwith J. Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Science. 1993;262:1744–7. doi: 10.1126/science.8259521.CrossRefGoogle Scholar
  48. Desplancq D, Bernard C, Sibler A-P, Kieffer B, Miguet L, Potier N, Van Dorsselaer A, Weiss E. Combining inducible protein overexpression with NMR-grade triple isotope labeling in the cyanobacterium Anabaena sp. PCC 7120. Biotechniques. 2005;39:405–11.
  49. Deutschmann R, Dekker RFH. From plant biomass to bio-based chemicals: latest developments in xylan research. Biotechnol Adv. 2012;30:1627–40.
  50. Dey TB, Adak S, Bhattacharya P, Banerjee R. Purification of polygalacturonase from Aspergillus awamori Nakazawa MTCC 6652 and its application in apple juice clarification. LWT Food Sci Technol. 2014;59:591–5.
  51. Dhillon A, Khanna S. Production of a thermostable alkali-tolerant xylanase from Bacillus circulans AB 16 grown on wheat straw. World J Microbiol Biotechnol. 2000;16:325–7. doi: 10.1023/A:1008911026606.CrossRefGoogle Scholar
  52. Dias MOS, Junqueira TL, Cavalett O, Cunha MP, Jesus CDF, Rossell CEV, Maciel Filho R, Bonomi A. Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash. Bioresour Technol. 2012;103:152–61.
  53. Dodd D, Cann IKO. Enzymatic deconstruction of xylan for biofuel production. GCB Bioenergy. 2009;1:2–17. doi: 10.1111/j.1757-1707.2009.01004.x.CrossRefGoogle Scholar
  54. Dominguez R, Souchon H, Spinelli S, Dauter Z, Wilson KS, Chauvaux S, Beguin P, Alzari PM. A common protein fold and similar active site in two distinct families of [beta]-glycanases. Nat Struct Mol Biol. 1995;2:569–76.
  55. Fan G, Yang S, Yan Q, Guo Y, Li Y, Jiang Z. Characterization of a highly thermostable glycoside hydrolase family 10 xylanase from Malbranchea cinnamomea. Int J Biol Macromol. 2014;70:482–9.
  56. Fenel F, Leisola M, Jänis J, Turunen O. A de novo designed N-terminal disulphide bridge stabilizes the Trichoderma reesei endo-1,4-β-xylanase II. J Biotechnol. 2004;108:137–43.
  57. Ferreira V, da Silva R, Silva D, Gomes E. Production of pectate lyase by Penicillium viridicatum RFC3 in solid-state and submerged fermentation. Int J Microbiol. 2010;2010, 276590. doi: 10.1155/2010/276590. 8pp.CrossRefGoogle Scholar
  58. Fushinobu S, Alves VD, Coutinho PM. Multiple rewards from a treasure trove of novel glycoside hydrolase and polysaccharide lyase structures: new folds, mechanistic details, and evolutionary relationships. Curr Opin Struct Biol. 2013;23:652–9.
  59. Gao M, Shi Z. Process control and optimization for heterologous protein production by methylotrophic Pichia pastoris. Chin J Chem Eng. 2013;21:216–26.
  60. Gao M-T, Yano S, Minowa T. Characteristics of enzymes from Acremonium cellulolyticus strains and their utilization in the saccharification of potato pulp. Biochem Eng J. 2014;83:1–7.
  61. Garg G, Dhiman SS, Gautam R, Mahajan R, Patra AK, Sharma J. Bioscouring of jute fabric by cellulase-free alkalo-thermostable xylanase from Bacillus pumilus ASH. J Mol Catal B Enzym. 2013;85–86:43–8.
  62. Gellissen G, Hollenberg CP. Application of yeasts in gene expression studies: a comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis—a review. Gene. 1997;190:87–97.
  63. Gems D, Johnstone IL, Clutterbuck AJ. An autonomously replicating plasmid transforms Aspergillus nidulans at high frequency. Gene. 1991;98:61–7.
  64. Georgiou G, Segatori L. Preparative expression of secreted proteins in bacteria: status report and future prospects. Curr Opin Biotechnol. 2005;16:538–45.
  65. Georis J, Giannotta F, De Buyl E, Granier Bt, Frère J-M. Purification and properties of three endo-β-1,4-xylanases produced by Streptomyces sp. strain S38 which differ in their ability to enhance the bleaching of kraft pulps. Enzyme Microb Technol. 2000;26:178–86.
  66. Gomes E, Leite RSR, da Silva R, Silva D. Purification of an exopolygalacturonase from Penicillium viridicatum RFC3 produced in submerged fermentation. Int J Microbiol. 2009;2009:8. doi: 10.1155/2009/631942.CrossRefGoogle Scholar
  67. Goodey AR. The production of heterologous plasma proteins. Trends Biotechnol. 1993;11:430–3.
  68. Graham JE, Clark ME, Nadler DC, Huffer S, Chokhawala HA, Rowland SE, Blanch HW, Clark DS, Robb FT. Identification and characterization of a multidomain hyperthermophilic cellulase from an archaeal enrichment. Nat Commun. 2011;2:375.
  69. Gutiérrez J, Bourque D, Criado R, Choi YJ, Cintas LM, Hernández PE, Míguez CB. Heterologous extracellular production of enterocin P from Enterococcus faecium P13 in the methylotrophic bacterium Methylobacterium extorquens. FEMS Microbiol Lett. 2005;248:125–31. doi: 10.1016/j.femsle.2005.05.029.CrossRefGoogle Scholar
  70. Gutiérrez A, López-García S, Garre V. High reliability transformation of the basal fungus Mucor circinelloides by electroporation. J Microbiol Methods. 2011;84:442–6.
  71. Haki GD, Rakshit SK. Developments in industrially important thermostable enzymes: a review. Bioresour Technol. 2003;89:17–34.
  72. Hammarström M, Hellgren N, van den Berg S, Berglund H, Härd T. Rapid screening for improved solubility of small human proteins produced as fusion proteins in Escherichia coli. Protein Sci. 2002;11:313–21. doi: 10.1110/ps.22102.CrossRefGoogle Scholar
  73. Hansen NML, Plackett D. Sustainable films and coatings from hemicelluloses: a review. Biomacromolecules. 2008;9:1493–505. doi: 10.1021/bm800053z.CrossRefGoogle Scholar
  74. Hansson M, Samuelson P, Nguyen TN, Ståhl S. General expression vectors for Staphylococcus carnosus enabled efficient production of the outer membrane protein A of Klebsiella pneumoniae. FEMS Microbiol Lett. 2002;210:263–70. doi: 10.1111/j.1574-6968.2002.tb11191.x.CrossRefGoogle Scholar
  75. Hedlund BP, Cole JK, Williams AJ, Hou W, Zhou E, Li W, Dong H. A review of the microbiology of the Rehai geothermal field in Tengchong, Yunnan Province, China. Geosci Front. 2012;3:273–88.
  76. Hellwig S, Emde F, Raven NPG, Henke M, van der Logt P, Fischer R. Analysis of single-chain antibody production in Pichia pastoris using on-line methanol control in fed-batch and mixed-feed fermentations. Biotechnol Bioeng. 2001;74:344–52. doi: 10.1002/bit.1125.CrossRefGoogle Scholar
  77. Henrissat A, Bairoch BA. Updating the sequence-based classification of glycosyl hydrolases. Biochem J. 1996;316:695–6.
  78. Henrissat B, Callebaut I, Fabrega S, Lehn P, Mornon JP, Davies G. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc Natl Acad Sci. 1995;92:7090–4.
  79. Horn S, Vaaje-Kolstad G, Westereng B, Eijsink VG. Novel enzymes for the degradation of cellulose. Biotechnol Biofuels. 2012;5:45.
  80. Huang C-T, Peretti S, Bryers J. Effects of inducer levels on a recombinant bacterial biofilm formation and gene expression. Biotechnol Lett. 1994;16:903–8. doi: 10.1007/BF00128622.CrossRefGoogle Scholar
  81. Huber R, Langworthy T, König H, Thomm M, Woese C, Sleytr U, Stetter K. Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch Microbiol. 1986;144:324–33. doi: 10.1007/BF00409880.CrossRefGoogle Scholar
  82. Hung K-S, Liu S-M, Tzou W-S, Lin F-P, Pan C-L, Fang T-Y, Sun K-H, Tang S-J. Characterization of a novel GH10 thermostable, halophilic xylanase from the marine bacterium Thermoanaerobacterium saccharolyticum NTOU1. Process Biochem. 2011;46:1257–63.
  83. Ibrahim D, Weloosamy H, Sheh-Hong L. Potential use of nylon scouring pad cubes attachment method for pectinase production by Aspergillus niger HFD5A-1. Process Biochem. 2014;49:660–7.
  84. Ilmen M, den Haan R, Brevnova E, McBride J, Wiswall E, Froehlich A, Koivula A, Voutilainen S, Siika-aho M, la Grange D, Thorngren N, Ahlgren S, Mellon M, Deleault K, Rajgarhia V, van Zyl W, Penttila M. High level secretion of cellobiohydrolases by Saccharomyces cerevisiae. Biotechnol Biofuels. 2011;4:30.
  85. Inamdar A. Polygalacturonase from Thermoascus auranticus: isolation and functional characteristics. Indian Institute of Science; 1987.Google Scholar
  86. Invitrogen. pYES2 User manual. In: I Corporation, editor. Carlsbad; 2008.Google Scholar
  87. Jayani RS, Saxena S, Gupta R. Microbial pectinolytic enzymes: a review. Process Biochem. 2005;40:2931–44.
  88. Jiang Z, Li X, Yang S, Li L, Tan S. Improvement of the breadmaking quality of wheat flour by the hyperthermophilic xylanase B from Thermotoga maritima. Food Res Int. 2005;38:37–43.
  89. Kalogeris E, Christakopoulos P, Kekos D, Macris BJ. Studies on the solid-state production of thermostable endoxylanases from Thermoascus aurantiacus: characterization of two isozymes. J Biotechnol. 1998;60:155–63.
  90. Kapoor M, Khalil Beg Q, Bhushan B, Dadhich KS, Hoondal GS. Production and partial purification and characterization of a thermo-alkali stable polygalacturonase from Bacillus sp. MG-cp-2. Process Biochem. 2000;36:467–73.
  91. Kashyap DR, Vohra PK, Chopra S, Tewari R. Applications of pectinases in the commercial sector: a review. Bioresour Technol. 2001;77:215–27.
  92. Katzke N, Arvani S, Bergmann R, Circolone F, Markert A, Svensson V, Jaeger K-E, Heck A, Drepper T. A novel T7 RNA polymerase dependent expression system for high-level protein production in the phototrophic bacterium Rhodobacter capsulatus. Protein Expr Purif. 2010;69:137–46.
  93. Keränen S, Penttilä M. Production of recombinant proteins in the filamentous fungus Trichoderma reesei. Curr Opin Biotechnol. 1995;6:534–7.
  94. Kim TH, Kim TH. Overview of technical barriers and implementation of cellulosic ethanol in the U.S. Energy. 2014;66:13–9.
  95. Klein TM, Wolf ED, Wu R, Sanford JC. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature. 1987;327:70–3.
  96. Kobayashi T, Hatada Y, Higaki N, Lusterio DD, Ozawa T, Koike K, Kawai S, Ito S. Enzymatic properties and deduced amino acid sequence of a high-alkaline pectate lyase from an alkaliphilic Bacillus isolate. Biochim Biophys Acta Gen Subjects. 1999;1427:145–54.
  97. Kohli U, Nigam P, Singh D, Chaudhary K. Thermostable, alkalophilic and cellulase free xylanase production by Thermoactinomyces thalophilus subgroup C. Enzyme Microb Technol. 2001;10:606–10.
  98. Kozianowski G, Canganella F, Rainey FA, Hippe H, Antranikian G. Purification and characterization of thermostable pectate-lyases from a newly isolated thermophilic bacterium, Thermoanaerobacter italicus sp. nov. Extremophiles. 1997;1:171–82. doi: 10.1007/s007920050031.CrossRefGoogle Scholar
  99. Kück U, Hoff B. New tools for the genetic manipulation of filamentous fungi. Appl Microbiol Biotechnol. 2010;86:51–62. doi: 10.1007/s00253-009-2416-7.CrossRefGoogle Scholar
  100. Kulkarni N, Shendye A, Rao M. Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev. 1999;23:411–56.CrossRefGoogle Scholar
  101. Kumar S, Nussinov R. How do thermophilic proteins deal with heat? Cell Mol Life Sci. 2001;58:1216–33. doi: 10.1007/PL00000935.CrossRefGoogle Scholar
  102. Kumar S, Palanivelu P. Purification and characterization of an extracellular polygalacturonase from the thermophilic fungus, Thermomyces lanuginosus. World J Microbiol Biotechnol. 1999;218:643–6. doi: 10.1023/A:1008998523125.CrossRefGoogle Scholar
  103. Lea AGH. Enzymes in the production of beverages and fruit juices. In: Tucker GA, Woods LFJ, editors. Enzymes in food processing. New York: Springer; 1995. p. 223–49.Google Scholar
  104. Lee J-W, Park J-Y, Kwon M, Choi I-G. Purification and characterization of a thermostable xylanase from the brown-rot fungus Laetiporus sulphureus. J Biosci Bioeng. 2009;107:33–7.
  105. Leite RSR, Gomes E, da Silva R. Characterization and comparison of thermostability of purified β-glucosidases from a mesophilic Aureobasidium pullulans and a thermophilic Thermoascus aurantiacus. Process Biochem. 2007;42:1101–6.
  106. Leite RSR, Alves-Prado HF, Cabral H, Pagnocca FC, Gomes E, Da-Silva R. Production and characteristics comparison of crude β-glucosidases produced by microorganisms Thermoascus aurantiacus e Aureobasidium pullulans in agricultural wastes. Enzyme Microb Technol. 2008;43:391–5.
  107. Leuschner C, Antranikian G. Heat-stable enzymes from extremely thermophilic and hyperthermophilic microorganisms. World J Microbiol Biotechnol. 1995;11:95–114. doi: 10.1007/BF00339139.CrossRefGoogle Scholar
  108. Lin J, Ndlovu LM, Singh S, Pillay B. Purification and biochemical characteristics of β-D-xylanase from a thermophilic fungus, Thermomyces lanuginosus-SSBP. Biotechnol Appl Biochem. 1999;30:73–9. doi: 10.1111/j.1470-8744.1999.tb01162.x.Google Scholar
  109. Liu Z, Friesen T. Polyethylene glycol (peg)-mediated transformation in filamentous fungal pathogens. In: Bolton MD, Thomma BPHJ, editors. Plant fungal pathogens. New York: Humana Press; 2012. p. 365–75.Google Scholar
  110. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 2002;66:506–77. doi: 10.1128/mmbr.66.3.506-577.2002.CrossRefGoogle Scholar
  111. Maalej I, Belhaj I, Masmoudi N, Belghith H. Highly thermostable xylanase of the thermophilic fungus Talaromyces thermophilus: purification and characterization. Appl Biochem Biotechnol. 2009;158:200–12. doi: 10.1007/s12010-008-8317-x.CrossRefGoogle Scholar
  112. Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM. Heterologous protein production using the Pichia pastoris expression system. Yeast. 2005;22:249–70. doi: 10.1002/yea.1208.CrossRefGoogle Scholar
  113. Maheshwari R, Bharadwaj G, Bhat MK. Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev. 2000;64:461–88. doi: 10.1128/mmbr.64.3.461-488.2000.CrossRefGoogle Scholar
  114. Marisch K, Bayer K, Cserjan-Puschmann M, Luchner M, Striedner G. Evaluation of three industrial Escherichia coli strains in fed-batch cultivations during high-level SOD protein production. Microb Cell Factories. 2013;12:58. doi: 10.1186/1475-2859-12-58.CrossRefGoogle Scholar
  115. Martin N, Guez MAU, Sette LD, Da Silva R, Gomes E. Pectinase production by a Brazilian thermophilic fungus Thermomucor indicae-seudaticae N31 in solid-state and submerged fermentation. Microbiology. 2010;79:306–13. doi: 10.1134/S0026261710030057.CrossRefGoogle Scholar
  116. Martins EdS, Silva D, Da Silva R, Gomes E. Solid state production of thermostable pectinases from thermophilic Thermoascus aurantiacus. Process Biochem. 2002;37:949–54.
  117. Martins E, Silva D, Leite RR, Gomes E. Purification and characterization of polygalacturonase produced by thermophilic Thermoascus aurantiacus CBMAI-756 in submerged fermentation. Antonie Van Leeuwenhoek. 2007;91:291–9. doi: 10.1007/s10482-006-9114-6.CrossRefGoogle Scholar
  118. Martins EDS, Leite RSR, da Silva R, Gomes E. Purification and properties of polygalacturonase produced by thermophilic fungus Thermoascus aurantiacus CBMAI-756 on solid-state fermentation. Enzym Res. 2013;2013:7. doi: 10.1155/2013/438645.CrossRefGoogle Scholar
  119. McHunu NP, Singh S, Permaul K. Expression of an alkalo-tolerant fungal xylanase enhanced by directed evolution in Pichia pastoris and Escherichia coli. J Biotechnol. 2009;141:26–30.
  120. Mei Y, Chen Y, Zhai R, Liu Y. Cloning, purification and biochemical properties of a thermostable pectinase from Bacillus halodurans M29. J Mol Catal B Enzym. 2013;94:77–81.
  121. Meyer V, Mueller D, Strowig T, Stahl U. Comparison of different transformation methods for Aspergillus giganteus. Curr Genet. 2003;43:371–7. doi: 10.1007/s00294-003-0406-3.CrossRefGoogle Scholar
  122. Miroux B, Walker JE. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol. 1996;260:289–98. doi: 10.1006/jmbi.1996.0399.CrossRefGoogle Scholar
  123. Mitrovic A, Flicker K, Steinkellner G, Gruber K, Reisinger C, Schirrmacher G, Camattari A, Glieder A. Thermostability improvement of endoglucanase Cel7B from Hypocrea pseudokoningii. J Mol Catal B Enzym. 2014;103:16–23.
  124. Moretti MMS, Martins DAB, Silva R, Rodrigues A, Sette LD, Gomes E. Selection of thermophilic and thermotolerant fungi for the production of cellulases and xylanases under solid-state fermentation. Braz J Microbiol. 2012;10:1062–71.CrossRefGoogle Scholar
  125. Moretti MMDS, Bocchini-Martins DA, Nunes CDCC, Villena MA, Perrone OM, Silva Rd, Boscolo M, Gomes E. Pretreatment of sugarcane bagasse with microwaves irradiation and its effects on the structure and on enzymatic hydrolysis. Appl Energy. 2014;122:189–95.
  126. NC-IUBMB. Nomenclature Committee of the International Union of Biochemistry and Molecular Biology. Eur J Biochem. 1999;264:610–50. doi: 10.1046/j.1432-1327.1999.nomen.x.
  127. Niehaus F, Bertoldo C, Kähler M, Antranikian G. Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol. 1999;51:711–29. doi: 10.1007/s002530051456.CrossRefGoogle Scholar
  128. Olofsson K, Bertilsson M, Liden G. A short review on SSF—an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels. 2008;1:7.
  129. Ostergaard S, Olsson L, Nielsen J. Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 2000;64:34–50. doi: 10.1128/mmbr.64.1.34-50.2000.CrossRefGoogle Scholar
  130. Ozeki K, Kyoya F, Hizume K, Kanda A, Hamachi M, Nunokawa Y. Transformation of intact Aspergillus niger by electroporation. Biosci Biotechnol Biochem. 1994;58:2224–7. doi: 10.1271/bbb.58.2224.CrossRefGoogle Scholar
  131. Palackal N, Brennan Y, Callen WN, Dupree P, Frey G, Goubet F, Hazlewood GP, Healey S, Kang YE, Kretz KA, Lee E, Tan X, Tomlinson GL, Verruto J, Wong VWK, Mathur EJ, Short JM, Robertson DE, Steer BA. An evolutionary route to xylanase process fitness. Protein Sci. 2004;13:494–503. doi: 10.1110/ps.03333504.CrossRefGoogle Scholar
  132. Parachin NS, Siqueira S, de Faria FP, Torres FAG, de Moraes LMP. Xylanases from Cryptococcus flavus isolate I-11: enzymatic profile, isolation and heterologous expression of CfXYN1 in Saccharomyces cerevisiae. J Mol Catal B Enzym. 2009;59:52–7.
  133. Parisot J, Langlois V, Sakanyan V, Rabiller C. Cloning expression and characterization of a thermostable exopolygalacturonase from Thermotoga maritima. Carbohydr Res. 2003;338:1333–7.
  134. Pedrolli D, Gomes E, Monti R, Carmona E. Studies on productivity and characterization of polygalacturonase from aspergillus giganteus submerged culture using citrus pectin and orange waste. Appl Biochem Biotechnol. 2008;144:191–200. doi: 10.1007/s12010-007-8059-1.CrossRefGoogle Scholar
  135. Pedrolli DB, Monteiro AC, Gomes E, Carmona EC. Pectin and pectinases: production, characterization and industrial application of microbial pectinolytic enzymes. Open Biotechnol J. 2009;3:9–18.CrossRefGoogle Scholar
  136. Pereira JC, Leite RSR, Alves-Prado HF, Bocchini-Martins DA, Gomes E, DaSilva R. Production and characterization of β;-glucosidase obtained by the solid-state cultivation of the thermophilic fungus Thermomucor indicae-seudaticae N31. Appl Biochem Biotechnol. 2014;174:1–8.CrossRefGoogle Scholar
  137. Peroutka Iii R, Orcutt S, Strickler J, Butt T. SUMO fusion technology for enhanced protein expression and purification in prokaryotes and eukaryotes. In: Evans JTC, Xu M-Q, editors. Heterologous gene expression in E. coli. New York: Humana Press; 2011. p. 15–30.Google Scholar
  138. Petsch D, Anspach FB. Endotoxin removal from protein solutions. J Biotechnol. 2000;76:97–119.
  139. Phillips TA, VanBogelen RA, Neidhardt FC. lon gene product of Escherichia coli is a heat-shock protein. J Bacteriol. 1984;159:283–7.
  140. Pilnik W, Rombouts FM. Pectic enzymes. In: Blakebrough N, Parker KJ, Birch GG, editors. Enzymes and food processing. Netherlands: Springer; 1981. p. 105–28.CrossRefGoogle Scholar
  141. Potvin G, Ahmad A, Zhang Z. Bioprocess engineering aspects of heterologous protein production in Pichia pastoris: a review. Biochem Eng. J. 2012;64:91–105.
  142. Pribowo A, Arantes V, Saddler JN. The adsorption and enzyme activity profiles of specific Trichoderma reesei cellulase/xylanase components when hydrolyzing steam pretreated corn stover. Enzyme Microb Technol. 2012;50:195–203.
  143. Puchart Vr, Katapodis P, Biely P, Kremnický Lr, Christakopoulos P, Vršanská M, Kekos D, Macris BJ, Bhat MK. Production of xylanases, mannanases, and pectinases by the thermophilic fungus Thermomyces lanuginosus. Enzyme Microb Technol. 1999;24:355–61.
  144. Qi M, Jun H-S, Forsberg CW. Cel9D, an Atypical 1,4-β-d-glucan glucohydrolase from Fibrobacter succinogenes: characteristics, catalytic residues, and synergistic interactions with other cellulases. J Bacteriol. 2008;190:1976–84. doi: 10.1128/jb.01667-07.CrossRefGoogle Scholar
  145. Qiao W, Tang S, Mi S, Jia X, Peng X, Han Y. Biochemical characterization of a novel thermostable GH11 xylanase with CBM6 domain from Caldicellulosiruptor kronotskyensis. J Mol Catal B Enzym. 2014;107:8–16.
  146. Qing G, Ma L-C, Khorchid A, Swapna GVT, Mal TK, Takayama MM, Xia B, Phadtare S, Ke H, Acton T, Montelione GT, Ikura M, Inouye M. Cold-shock induced high-yield protein production in Escherichia coli. Nat Biotechnol. 2004;22:877–82.
  147. Radzio R, Kück U. Synthesis of biotechnologically relevant heterologous proteins in filamentous fungi. Process Biochem. 1997;32:529–39.
  148. Rani DS, Nand K. Production of thermostable cellulase-free xylanase by Clostridium absonum CFR-702. Process Biochem. 2000;36:355–62.
  149. Rastogi G, Bhalla A, Adhikari A, Bischoff KM, Hughes SR, Christopher LP, Sani RK. Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Bioresour Technol. 2010;101:8798–806.
  150. Rättö M, Mathrani IM, Ahring B, Viikari L. Application of thermostable xylanase of Dictyoglomus sp. in enzymatic treatment of kraft pulps. Appl Microbiol Biotechnol. 1994;41:130–9. doi: 10.1007/s002530050119.CrossRefGoogle Scholar
  151. Rehman HU, Aman A, Nawaz MA, Qader SAU. Characterization of pectin degrading polygalacturonase produced by Bacillus licheniformis KIBGE-IB21. Food Hydrocolloids. 2015;43:819–24.
  152. Riedel K, Ritter J, Bauer S, Bronnenmeier K. The modular cellulase CelZ of the thermophilic bacterium Clostridium stercorarium contains a thermostabilizing domain. FEMS Microbiol Lett. 1998;164:261–7. doi: 10.1111/j.1574-6968.1998.tb13096.x.CrossRefGoogle Scholar
  153. Romanos MA, Scorer CA, Clare JJ. Foreign gene expression in yeast: a review. Yeast. 1992;8:423–88. doi: 10.1002/yea.320080602.CrossRefGoogle Scholar
  154. Ruiz-Díez B. Strategies for the transformation of filamentous fungi. J Appl Microbiol. 2002;92:189–95. doi: 10.1046/j.1365-2672.2002.01516.x.CrossRefGoogle Scholar
  155. Ruller R, Deliberto L, Ferreira TL, Ward RJ. Thermostable variants of the recombinant xylanase a from Bacillus subtilis produced by directed evolution show reduced heat capacity changes. Proteins Struct Funct Bioinform. 2008;70:1280–93. doi: 10.1002/prot.21617.CrossRefGoogle Scholar
  156. Rustiguel CB, Terenzi HF, Jorge JA, Guimarães LHS. A novel silver-activated extracellular β-d-fructofuranosidase from Aspergillus phoenicis. J Mol Catal B Enzym. 2010;67:10–5.
  157. Ruttersmith L, Daniel R. Thermostable cellobiohydrolase from the thermophilic eubacterium Thermotoga sp. strain FjSS3-B.1. Purification and properties. Biochem J. 1991;277:887–90.
  158. Ruttersmith LD, Daniel RM, Simpson HD. Cellulolytic and hemicellulolytic enzymes functional above 100°Ca. Ann N Y Acad Sci. 1992;672:137–41. doi: 10.1111/j.1749-6632.1992.tb35614.x.CrossRefGoogle Scholar
  159. Saha BC. Production, purification and properties of xylanase from a newly isolated Fusarium proliferatum. Process Biochem. 2002;37:1279–84.
  160. Sahdev S, Khattar S, Saini K. Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem. 2008;307:249–64. doi: 10.1007/s11010-007-9603-6.CrossRefGoogle Scholar
  161. Sahnoun M, Bejar S, Sayari A, Triki MA, Kriaa M, Kammoun R. Production, purification and characterization of two α-amylase isoforms from a newly isolated Aspergillus Oryzae strain S2. Process Biochem. 2012;47:18–25.
  162. Salar RK, Aneja K. Thermophilic fungi: taxonomy and biogeography. J Agric Technol. 2007;3:77–107.Google Scholar
  163. Sánchez O, Aguirre J. Efficient transformation of Aspergillus nidulans by electroporation of germinated conidia. Fungal Genet Newsl. 1996;43:48–51.Google Scholar
  164. Saul DJ, Williams LC, Reeves RA, Bergquist PL. Secondary structure model for an unusual SSU rRNA from the extremely thermophilic bacterium strain AZ3 B.1. Biochim Biophys Acta Gene Struct Expr. 1994;1217:211–3.
  165. Scandurra R, Consalvi V, Chiaraluce R, Politi L, Engel PC. Protein thermostability in extremophiles. Biochimie. 1998;80:933–41.
  166. Schneider JC, Jenings AF, Mun DM, McGovern PM, Chew LC. Auxotrophic markers pyrF and proC can replace antibiotic markers on protein production plasmids in high-cell-density Pseudomonas fluorescens fermentation. Biotechnol Prog. 2005;21:343–8. doi: 10.1021/bp049696g.CrossRefGoogle Scholar
  167. Schuster A, Bruno K, Collett J, Baker S, Seiboth B, Kubicek C, Schmoll M. A versatile toolkit for high throughput functional genomics with Trichoderma reesei. Biotechnol Biofuels. 2012;5:1.
  168. Segato F, Damasio ARL, Gonçalves TA, Murakami MT, Squina FM, Polizeli M, Mort AJ, Prade RA. Two structurally discrete GH7-cellobiohydrolases compete for the same cellulosic substrate fiber. Biotechnol Biofuels. 2012;5:21.CrossRefGoogle Scholar
  169. Shallom D, Shoham Y. Microbial hemicellulases. Curr Opin Microbiol. 2003;6:219–28.
  170. Sharma DC, Satyanarayana T. A marked enhancement in the production of a highly alkaline and thermostable pectinase by Bacillus pumilus dcsr1 in submerged fermentation by using statistical methods. Bioresour Technol. 2006;97:727–33.
  171. Shin KS, Shin YK, Yoon JH, Park YH. Candida thermophila sp. nov., a novel thermophilic yeast isolated from soil. Int J Syst Evol Microbiol. 2001;51:2167–70. doi: 10.1099/00207713-51-6-2167.CrossRefGoogle Scholar
  172. Shoseyov O, Shani Z, Levy I. Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev. 2006;70:283–95. doi: 10.1128/mmbr.00028-05.CrossRefGoogle Scholar
  173. Simpson HD, Haufler UR, Daniel RM. An extremely thermostable xylanase from the thermophilic eubacterium Thermotoga. Biochem J. 1991;277:413–7.CrossRefGoogle Scholar
  174. Singh SA, Ramakrishna M, Appu Rao AG. Optimisation of downstream processing parameters for the recovery of pectinase from the fermented bran of Aspergillus carbonarius. Process Biochem. 1999;35:411–7.
  175. Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A. Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb Technol. 2010;46:541–9.
  176. Song J-A, Lee D-S, Park J-S, Han K-Y, Lee J. A novel Escherichia coli solubility enhancer protein for fusion expression of aggregation-prone heterologous proteins. Enzyme Microb Technol. 2011;49:124–30.
  177. Squina FM, Prade RA, Wang H, Murakami MT. Expression, purification, crystallization and preliminary crystallographic analysis of an endo-1,5-[alpha]-l-arabinanase from hyperthermophilic Thermotoga petrophila. Acta Crystallogr Sect F. 2009;65:902–5. doi: 10.1107/S1744309109029844.CrossRefGoogle Scholar
  178. Stephens DE, Khan FI, Singh P, Bisetty K, Singh S, Permaul K. Creation of thermostable and alkaline stable xylanase variants by DNA shuffling. J Biotechnol. 2014;187:139–46.
  179. Stone JE, Scallan AM. Effect of component removal upon the porous structure of the cell wall of wood. J Polym Sci C Polym Symp. 1965;11:13–25. doi: 10.1002/polc.5070110104.CrossRefGoogle Scholar
  180. Sugui JA, Chang YC, Kwon-Chung KJ. Agrobacterium tumefaciens-mediated transformation of Aspergillus fumigatus: an efficient tool for insertional mutagenesis and targeted gene disruption. Appl Environ Microbiol. 2005;71:1798–802. doi: 10.1128/aem.71.4.1798-1802.2005.CrossRefGoogle Scholar
  181. Sunna A, Moracci M, Rossi M, Antranikian G. Glycosyl hydrolases from hyperthermophiles. Extremophiles. 1997;1:2–13. doi: 10.1007/s007920050009.CrossRefGoogle Scholar
  182. Szijártó N, Siika-aho M, Tenkanen M, Alapuranen M, Vehmaanperä J, Réczey K, Viikari L.Hydrolysis of amorphous and crystalline cellulose by heterologously produced cellulases of Melanocarpus albomyces. J Biotechnol. 2008;136:140–7.
  183. Szilágyi A, Závodszky P. Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure. 2000;8:493–504.
  184. Teng C, Yan Q, Jiang Z, Fan G, Shi B. Production of xylooligosaccharides from the steam explosion liquor of corncobs coupled with enzymatic hydrolysis using a thermostable xylanase. Bioresour Technol. 2010;101:7679–82.
  185. Terpe K. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol. 2006;72:211–22. doi: 10.1007/s00253-006-0465-8.CrossRefGoogle Scholar
  186. Torres FAG, Moraes L. Proteínas recombinantes produzidas em leveduras. Biotecnol Cienc Desenvolv. 2002;29:20–2.Google Scholar
  187. Trevizano LM, Ventorim RZ, de Rezende ST, Silva Junior FP, Guimarães VM. Thermostability improvement of Orpinomyces sp. xylanase by directed evolution. J Mol Catal B Enzym. 2012;81:12–18.
  188. Turner P, Mamo G, Karlsson E. Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microbial Cell Factories. 2007;6:9.
  189. Turunen O, Vuorio M, Fenel F, Leisola M. Engineering of multiple arginines into the Ser/Thr surface of Trichoderma reesei endo-1,4-β-xylanase II increases the thermotolerance and shifts the pH optimum towards alkaline pH. Protein Eng. 2002;15:141–5. doi: 10.1093/protein/15.2.141.CrossRefGoogle Scholar
  190. Udaka S, Yamagata H. High-level secretion of heterologous proteins Bacillus brevis. In: Ray W, editor. Methods in enzymology. New York: Academic Press; 1993. p. 23–33.Google Scholar
  191. Van Hung P, Maeda T, Morita N. Waxy and high-amylose wheat starches and flours—characteristics, functionality and application. Trends Food Sci Technol. 2006;17:448–56.
  192. Várnai A, Mäkelä MR, Djajadi DT, Rahikainen J, Hatakka A, Viikari L. Carbohydrate-binding modules of fungal cellulases: occurrence in nature, function, and relevance in industrial biomass conversion. In: Sima S, Geoffrey Michael G, editors. Advances in applied microbiology. New York: Academic Press; 2014. p. 103–65.Google Scholar
  193. Vassileva A, Chugh DA, Swaminathan S, Khanna N. Expression of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris using the GAP promoter. J Biotechnol. 2001;88:21–35.
  194. Vieille C, Zeikus GJ. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev. 2001;65:1–43. doi: 10.1128/mmbr.65.1.1-43.2001.CrossRefGoogle Scholar
  195. Viikari L, Alapuranen M, Puranen T, Vehmaanperä J, Siika-aho M. Thermostable enzymes in lignocellulose hydrolysis. In: Olsson L, editor. Biofuels. Berlin: Springer; 2007. p. 121–45.CrossRefGoogle Scholar
  196. Wang B, Xia L. High efficient expression of cellobiase gene from Aspergillus niger in the cells of Trichoderma reesei. Bioresour Technol. 2011;102:4568–72.
  197. Wang Y, Wang X, Tang R, Yu S, Zheng B, Feng Y. A novel thermostable cellulase from Fervidobacterium nodosum. J Mol Catal B Enzym. 2010;66:294–301.
  198. Wang H-C, Chen Y-C, Huang C-T, Hseu R-S. Cloning and characterization of a thermostable and pH-stable cellobiohydrolase from Neocallimastix patriciarum J11. Protein Expr Purif. 2013;90:153–9.
  199. Waterham HR, Digan ME, Koutz PJ, Lair SV, Cregg JM. Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene. 1997;186:37–44.
  200. Whitney SEC, Gidley MJ, McQueen-Mason SJ. Probing expansin action using cellulose/hemicellulose composites. Plant J. 2000;22:327–34. doi: 10.1046/j.1365-313x.2000.00742.x.CrossRefGoogle Scholar
  201. Willats WGT, Knox JP, Mikkelsen JD. Pectin: new insights into an old polymer are starting to gel. Trends Food Sci. Technol. 2006;17:97–104.
  202. Winterhalter C, Liebl W. Two extremely thermostable xylanases of the hyperthermophilic bacterium Thermotoga maritima MSB8. Appl Environ Microbiol. 1995;61:1810–5.
  203. Zhang H, Woodams EE, Hang YD. Influence of pectinase treatment on fruit spirits from apple mash, juice and pomace. Process Biochem. 2011;186:1909–13.
  204. Zhang F, Hu S-N, Chen J-J, Lin L-B, Wei Y-L, Tang S-K, Xu L-H, Li W-J. Purification and partial characterisation of a thermostable xylanase from salt-tolerant Thermobifida halotolerans YIM 90462 T. Process Biochemi. 2012;47:225–8.
  205. Zhang Q, Zhang W, Lin C, Xu X, Shen Z. Expression of an Acidothermus cellulolyticus endoglucanase in transgenic rice seeds. Protein Expr Purif. 2012;82:279–83.
  206. Zoglowek M, Lübeck PS, Ahring BK, Lübeck M. Heterologous expression of cellobiohydrolases in filamentous fungi—an update on the current challenges, achievements and perspectives. Process Biochem. 2015;50:211–20.
  207. Zverlov V, Piotukh K, Dakhova O, Velikodvorskaya G, Borriss R. The multidomain xylanase A of the hyperthermophilic bacterium Thermotoga neapolitana is extremely thermoresistant. Appl Microbiol Biotechnol. 1996;45:245–7. doi: 10.1007/s002530050678.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Eleni Gomes
    • 1
    Email author
  • Angelica Rodrigues de Souza
    • 1
  • Guillermo Ladino Orjuela
    • 1
  • Roberto Da Silva
    • 1
  • Tássio Brito de Oliveira
    • 2
  • Andre Rodrigues
    • 2
  1. 1.Laboratory of Biochemistry and Applied MicrobiologySão Jose do Rio PretoBrazil
  2. 2.Laboratório de Ecologia e Sistemática de FungosRio ClaroBrazil

Personalised recommendations