Advertisement

Restoration of Blurred-Noisy Images Through the Concept of Bilevel Programming

  • Jessica Soo Mee WongEmail author
  • Chee Seng Chan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9475)

Abstract

Finding a compromise between regularity to remove noise and preserving image fidelity for natural images is unarguably a non-trivial problem. This paper proposes a new image restoration algorithm that executes an optimal tradeoff between sharpness and noise to warrant an acceptable result of image restoration based on bilevel programming. The algorithm demands an objective functions to perform denoising on the degraded image for the lower-level problem using the curvelet-based denoising method, while the upper-level problem with ultimate objective function that is to obtain restored image by performing deblurring to the denoised image using an improved Wiener filter. Experiments were conducted for synthetically blurred and noisy images. The experimental result shows that the algorithm successfully restores image detail. Numerical measurements of the image quality reveal that the algorithm is comparable with other state-of-the-art methods and has the advantage for image contrast and preserving edge details.

Keywords

Image restoration Image fidelity Regularization Curvelet transform Wiener filter Bilevel programming 

References

  1. 1.
    Cannon, M.: Blind deconvolution of spatially invariant image blurs with phase. IEEE Trans. Acoust. Speech Signal Process. 24(1), 58–63 (1976)CrossRefGoogle Scholar
  2. 2.
    Ayers, G.R., Dainty, J.C.: Iterative blind deconvolution method and its applications. Opt. Lett. 13(7), 547–549 (1988)CrossRefGoogle Scholar
  3. 3.
    Pan, H., Blu, T.: An iterative linear expansion of thresholds for ℓ1-based image restoration. IEEE Trans. Image Process. 22(9), 289–3715 (2013)CrossRefGoogle Scholar
  4. 4.
    Patel, V.M., Easley, G.R., Healy, D.M.: Shearlet-based deconvolution. IEEE Trans. Image Process. 18(12), 2673–26858 (2009)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Chantas, G., Galatsanos, N.P., Molina, R., Katsaggelos, A.K.: Variational bayesian image restoration with a product of spatially weighted total variation image priors. IEEE Trans. Image Process. 19(2), 351–362 (2010)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Portilla, J.: Image restoration through L0 analysis-based sparse optimization in tight frames. In Proceedings of 16th IEEE International Conference on Image Processing (ICIP) 2009, pp. 3909–3912 (2009)Google Scholar
  7. 7.
    Zhang, J., Zhao, D., Xiong, R., Ma, S., Gao, W.: Image restoration using joint statistical modeling in space-transform domain. IEEE Trans. Circuits Syst. Video Technol. 24(6), 915–928 (2014)CrossRefGoogle Scholar
  8. 8.
    Guerrero-Colon, J., Portilla, J.: Deblurring-by-denoising using spatially adaptive gaussian scale mixtures in overcomplete pyramids. In: Proceedings of IEEE International Conference on Image Processing (ICIP) 2006, pp. 625–628 (2006)Google Scholar
  9. 9.
    Jin, W.: Image restoration in neutron radiography using complex-wavelet denoising and lucy-richardson deconvolution. In: Proceedings of 8th IEEE Conference on Signal Processing (ICSP) 2006, pp. 16–20 (2006)Google Scholar
  10. 10.
    Daubechies, I., Teschke, G.: Variational image restoration by means of wavelets: simultaneous decomposition, deblurring and denoising. Appl. Comput. Harmonic Anal. 19(1), 1–16 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Mahbubur Rahman, S.M., Omair Ahmad, M., Swamy, M.N.S.: Improved image restoration using wavelet-based denoising and fourier-based deconvolution. In: Proceedings of the 51st IEEE International Midwest Symposium on Circuits and Systems, pp. 249–252 (2008)Google Scholar
  12. 12.
    Neelamani, R., Choi, H., Baraniuk, R.: ForWaRD: fourier-wavelet regularized deconvolution for ill-conditioned systems. IEEE Trans. Signal Process. 52(2), 418–433 (2004)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Wen, Y.W., Ching, W.K., Ng, M.K., Liu, H.: A hybrid algorithm for spatial and wavelet domain image restoration. In: Proceedings of SPIE - The International Society for Optical Engineering. pp. 59605 V–59605V–8 (2005)Google Scholar
  14. 14.
    Yang, H., Zhang, Z.B., Wu, D.Y., Huang, H.Y.: Image Deblurring using Empirical Wiener Filter in the Curvelet Domain and Joint Non-Local Means Filter in The Spatial Domain. Imaging Sci. J. 62(3), 178–185 (2014)CrossRefGoogle Scholar
  15. 15.
    Kim, J.R., Jo, J.B., Yang, H.-K.: A solution for bi-level network design problem through nash genetic algorithm. In: Szczuka, M.S., Howard, D., Ślȩzak, D., Kim, H.-k., Kim, T.-h., Ko, I.-s., Lee, G., Sloot, P.M. (eds.) ICHIT 2006. LNCS (LNAI), vol. 4413, pp. 269–280. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Huo, Y., Chen, J., Chen, L.J.: Reasonable scale of integrated transportation network based on bilevel programming. J. Chongqing Jiaotong Univ. (natural science) 29(5), 791–795 (2010)Google Scholar
  17. 17.
    Shee, D., Tang, T., Tzeng, G.: Modeling the supply-demand interaction in electronic commerce: a bi-level programming approach. J. Electron. Commer. Res. 1(2), 79–93 (2000)Google Scholar
  18. 18.
    Huang, W-Q., Li, P-X., Zhang, R-H.: The application of bi-level programming in airline revenue management. J. Comput. Eng. Appl. 7, 188–192 (2006) Google Scholar
  19. 19.
    Bard, J.F., Plummer, J., Sourie, J.C.: A bilevel programming approach to determining tax credits for biofuel production. Eur. J. Oper. Res. 120, 30–46 (2000)zbMATHCrossRefGoogle Scholar
  20. 20.
    Dong, H., Guarneri, P., Fadel, G.L.: Bi-level approach to vehicle component layout with shape morphing. J. Mech. Des. 133, 1–8 (2011)Google Scholar
  21. 21.
    Samuel K.G.G., Tappen, M.: Learning optimized map estimates in continuously-valued MRF models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2009, pp. 477–484 (2009)Google Scholar
  22. 22.
    Tappen, M.F.: Utilizing variational optimization to learn markov random fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2007, pp. 1–8 (2007)Google Scholar
  23. 23.
    Tappen, M.F., Liu, C., Adelson, E.H., Freeman, W.T.: Learning gaussian conditional random fields for low-level vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2007, pp. 1–8 (2007)Google Scholar
  24. 24.
    Fehrenbach, J., Nikolova, M., Steidl, G., Weiss, P.: Bilevel image denoising using gaussianity tests. In: Aujol, J.-F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 117–128. Springer, Heidelberg (2015)Google Scholar
  25. 25.
    Kunisch, K., Pock, T.: A bilevel optimization approach for parameter learning in variational models. SIAM J. Imaging Sci. 6(2), 938–983 (2013)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Stackelberg, H.V.: Market Structure and Equilibrium. Springer, New York (1934)Google Scholar
  27. 27.
    Stackelberg, H.V., Peacock, A.: The theory of the market economy. Oxford University Press, London (1952)Google Scholar
  28. 28.
    Bracken, J., McGill, J.: Mathematical programs with optimization problems in the constraints. Oper. Res. 21, 37–44 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Candler, W., Norton, R.: Multilevel programming. Technical report 20, World Bank Development Research Center, Washington D.C. (1977)Google Scholar
  30. 30.
    Kolstad, C.D.: A Review of Literature on Bi-Level Mathematical Programming. Technical report LA-10284-MS, Los Alomos National Laboratory, New Mexico (1985)Google Scholar
  31. 31.
    Colson, B., Marcotte, P., Savard, G.: Bilevel programming: a survey. 4OR Quart. J. Oper. Res. Springer-Verlag 3(2), 87–107 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Hongli, G., Juntao, L., Hong, G.: A survey of bilevel programming model and algorithm. In: Proceedings of IEEE International Symposium on Computational Intelligence and Design, pp.199–203 (2011)Google Scholar
  33. 33.
    Candès, E.J., Donoho, D.L.: Curvelets - A Surprisingly Effective Nonadaptive Representation for Objects with Edges. Curves and Surfaces, pp. 105–120. Vanderbilt University Press, Nashville, Tennessee (2000)Google Scholar
  34. 34.
    Wong, S.M.J.: Modulation transfer function compensation through a modified wiener filter for spatial image quality improvement. ISI Book Comput. Simul. Mod. Sci. 5, 177–182 (2010)Google Scholar
  35. 35.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  36. 36.
    Candès, E., Demanet, L., Donoho, D., Ying, L.: Fast discrete curvelet transforms. SIAM J. Multiscale Model. Simul. 5(3), 861–899 (2006)zbMATHCrossRefGoogle Scholar
  37. 37.
    Jiang Tao, Z.X.: Research and application of image denoising method based on curvelet transform. Int. Arch. Photogrammetry Remote Sens. Spat. Inf. Sci. (ISPRS Archives) XXXVIII, 363–368 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Center of Image and Signal Processing, Faculty of Computer Science and Information TechnologyUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations