Advertisement

Computing Voronoi Diagrams of Line Segments in K in O(n log n) Time

  • Jeffrey W. HolcombEmail author
  • Jorge A. Cobb
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9475)

Abstract

The theoretical bounds on the time required to compute a Voronoi diagram of line segments in 3D are the lower bound of Ω(n 2) and the upper bound of O(n 3+ε). We present a method here for computing Voronoi diagrams of line segments in O(2a k n log 2n + 2b k n log 2n + 14n + 12c 1 n) for k-dimensional space. We also present a modification to the Bowyer-Watson method to bring its runtime down to a tight O(n log n).

Keywords

Line Segment Voronoi Diagram Voronoi Cell Linked List Delaunay Tessellation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Delahaye, D., Puechmorel, S.: 3D airspace sectoring by evolutionary computation. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 1637–1644 (2006)Google Scholar
  2. 2.
    Cheddad, A., Mohamad, D., Manaf, A.: Exploiting voronoi diagram properties in face segmentation and feature extraction. Pattern Recogn. 41, 3842–3859 (2008)zbMATHCrossRefGoogle Scholar
  3. 3.
    Sabha, M., Dutré, P.: Feature-based texture synthesis and editing using voronoi diagrams. In: Sixth International Symposium on Voronoi Diagrams, pp. 165–170 (2009)Google Scholar
  4. 4.
    Agarwal, P.D., Shwarzkopf, O., Harir, M.: The Overlay of Lower Envelopes and its Applications. Disc. Comput. Geom. 15, 1–13 (1996)zbMATHCrossRefGoogle Scholar
  5. 5.
    Sharir, M.: Almost tight upper bounds for lower envelopes in higher dimensions. Disc. Comput. Geom. 12, 327–345 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Descartes, R.: Principia Philosophiǣ, Amsterdam (1644)Google Scholar
  7. 7.
    Dirichelt, P.: Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. Journal Für Die Reine Und Angewandte Mathematik, Berlin 40, 209–227 (1850)CrossRefGoogle Scholar
  8. 8.
    Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiqes, Premier Mémoire, Sur quelques propriétés des formes quadratiques positives parafites. Journal Für die reine und angewandte, Mathematik, Berlin 133, 97–102 (1908)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiqes, Deuxième Mémoire, Recherches sur les parallélloèdres primitifs. Journal Für die reine und angewandte, Mathematik, Berlin 134, 198–287 (1908)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Voronoi, G.: Nouvelles applications des paramètres continus à théorie des formes quadratiqes, Deuxième Mémoire, Recherches sur les parallélloèdres primitifs. Journal Für die reine und angewandte, Mathematik, Berlin 136, 67–182 (1909)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Watson, D.F.: Computing the n-dimensional delaunay tessellation with application to voronoi polytopes. Comput. J. 24(2), 167–172 (1981)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Bowyer, A.: Computing Dirichlet Tessellations. Comput. J. 24(2), 162–166 (1981)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Boada, I., Coll, N., Madern, N., Sellarès, J.: Approximations of 2D and 3D Generalized Voronoi Diagrams. International Journal of Computer Mathematics 85(7), 1003–1022 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Held, M.: VRONI: an engineering approach to the reliable and efficient computation of voronoi diagrams of points and line segments. Comput. Geom. 18(2), 95–123 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Held, M., Huber, S.: Topology-oriented incremental computation of voronoi diagrams of circular arcs and straight-line segments. Comput. Aided Des. 41, 327–338 (2009)zbMATHCrossRefGoogle Scholar
  16. 16.
    Gold, C., Remmele, P., and Roos, T.: Voronoi diagrams of line segments made easy. In: Canadian Conference on Computational Geometry (1995)Google Scholar
  17. 17.
    Hemmer, M., Setter, O., Halperin, D.: Constructing the exact voronoi diagram of arbitrary lines in three-dimensional space with fast point-location. In: 18th Annual European Symposium, pp. 6–8 (2010)Google Scholar
  18. 18.
    Holcomb, J.W., Cobb, J.A.: Voronoi diagrams of line segments in 3D, with application to automatic rigging. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., McMahan, R., Jerald, J., Zhang, H., Drucker, S.M., Kambhamettu, C., El Choubassi, M., Deng, Z., Carlson, M. (eds.) ISVC 2014, Part I. LNCS, vol. 8887, pp. 75–86. Springer, Heidelberg (2014)Google Scholar
  19. 19.
    Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. The MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  20. 20.
    Kepler, J.: Strena seu de Nive Sexangula, 1611Google Scholar
  21. 21.
    Hales, T.: A proof of the kepler conjecture. Ann. Math. 162, 1065–1185 (2005)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Holcomb TechnologiesIrvingUSA
  2. 2.Department of Computer EngineeringUniversity of Texas at DallasRichardsonUSA

Personalised recommendations