Advertisement

Visualizing Software Metrics in a Software System Hierarchy

  • Michael BurchEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9475)

Abstract

Various software metrics can be derived from a software system to measure inherent quantitative properties such a system can have or not. The general problem with these metrics is the fact that many of them may exist with varying values making an exploration of the raw metric data a challenging task. As another data dimension we have to deal with the hierarchical organization of the software system since we are also interested in software metric correlations or anomalies on different hierarchy levels. In this paper we introduce a visualization concept which shows the hierarchical organization of the software system on the one hand, but also the list of software metrics attached to each hierarchy level on the other hand. This interactive technique exploits the strengths of the human visual system that allow fast pattern recognition to derive similar or different metric patterns in the software hierarchy. The provided visualization technique targets the rapid finding of insights and knowledge in the typically vast amounts of multivariate and hierarchical software metric data. We illustrate the usefulness of our approach in a case study investigating more than 70 software metrics in the Eclipse open source software project.

Keywords

Visualization Technique Visual Pattern Hierarchical Organization Interaction Technique Software Metrics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Diehl, S.: Software Visualization - Visualizing the Structure, Behaviour, and Evolution of Software. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  2. 2.
    Burch, M., Diehl, S., Weißgerber, P.: EPOSee - A tool for visualizing software evolution. In: Proceedings of the 3rd International Workshop on Visualizing Software for Understanding and Analysis, VISSOFT, pp. 127–128 (2005)Google Scholar
  3. 3.
    Fenton, N.: Software Metrics A rigorous and practical approach. Chapman & Hall/CRC Innovations in Software Engineering and Software Development Series, 3rd edn. CRC Press, Boca Raton (2014)Google Scholar
  4. 4.
    Heinrich, J., Weiskopf, D.: Parallel coordinates for multidimensional data visualization: Basic concepts. Comput. Sci. Eng. 17, 70–76 (2015)CrossRefGoogle Scholar
  5. 5.
    Inselberg, A., Dimsdale, B.: Parallel coordinates: a tool for visualizing multi-dimensional geometry. In: IEEE Visualization, pp. 361–378 (1990)Google Scholar
  6. 6.
    Heinrich, J., Luo, Y., Kirkpatrick, A.E., Weiskopf, D.: Evaluation of a bundling technique for parallel coordinates. In: Proceedings of the International Conference on Computer Graphics Theory and Applications, pp. 594–602 (2012)Google Scholar
  7. 7.
    Heinrich, J., Bachthaler, S., Weiskopf, D.: Progressive splatting of continuous scatterplots and parallel coordinates. Comput. Graph. Forum 30, 653–662 (2011)CrossRefGoogle Scholar
  8. 8.
    Cleveland, W., McGill, M.: Dynamic Graphics for Statistics. Wadsworth, Belmont (1988)Google Scholar
  9. 9.
    Ward, M.O.: Xmdvtool: Integrating multiple methods for visualizing multivariate data. In: Proceedings of IEEE Visualization, pp. 326–333 (1994)Google Scholar
  10. 10.
    Ware, C.: Visual Thinking: for Design. Morgan Kaufmann Series in Interactive Technologies, San Francisco (2008). PaperbackGoogle Scholar
  11. 11.
    Rosenholtz, R., Li, Y., Mansfield, J., Jin, Z.: Feature congestion: a measure of display clutter. In: CHI, pp. 761–770 (2005)Google Scholar
  12. 12.
    Beck, F.: Software feathers - figurative visualization of software metrics. In: Proceedings of the 5th International Conference on Information Visualization Theory and Applications, pp. 5–16 (2014)Google Scholar
  13. 13.
    Fuchs, J., Jäckle, D., Weiler, N., Schreck, T.: Leaf glyph - visualizing multi-dimensional data with environmental cues. In: Proceedings of the 5th International Conference on Information Visualization Theory and Applications, pp. 195–206 (2015)Google Scholar
  14. 14.
    Chambers, J., Cleveland, W.S., Kleiner, B., Tukey, P.A.: Graphical Methods for Data Analysis. Wadsworth, Belmont (1983)zbMATHGoogle Scholar
  15. 15.
    Chernoff, H.: The use of faces to represent points in k-dimensional space graphically. J. Am. Stat. Assoc. (American Statistical Association) 68, 361–368 (1973)Google Scholar
  16. 16.
    Reingold, E.M., Tilford, J.S.: Tidier drawings of trees. IEEE Trans. Software Eng. 7, 223–228 (1981)CrossRefGoogle Scholar
  17. 17.
    Shneiderman, B.: Tree visualization with tree-maps: 2-D space-filling approach. ACM Trans. Graphic. 11, 92–99 (1992)zbMATHCrossRefGoogle Scholar
  18. 18.
    Kruskal, J., Landwehr, J.: Icicle plots: better displays for hierarchical clustering. Am. Stat. 37, 162–168 (1983)Google Scholar
  19. 19.
    Burch, M., Raschke, M., Weiskopf, D.: Indented pixel tree plots. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Chung, R., Hammoud, R., Hussain, M., Kar-Han, T., Crawfis, R., Thalmann, D., Kao, D., Avila, L. (eds.) ISVC 2010, Part I. LNCS, vol. 6453, pp. 338–349. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  20. 20.
    Burch, M., Schmauder, H., Weiskopf, D.: Indented pixel tree browser for exploring huge hierarchies. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Wang, S., Kyungnam, K., Benes, B., Moreland, K., Borst, C., Di Verdi, S., Yi-Jen, C., Ming, J. (eds.) ISVC 2011, Part I. LNCS, vol. 6938, pp. 301–312. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  21. 21.
    Beck, F., Burch, M., Munz, T., Silvestro, L.D., Weiskopf, D.: Generalized Pythagoras trees for visualizing hierarchies. In: Proceedings of the 5th International Conference on Information Visualization Theory and Applications, pp. 17–28 (2014)Google Scholar
  22. 22.
    Archambault, D., Purchase, H.C.: The “map” in the mental map: experimental results in dynamic graph drawing. Int. J. Hum Comput Stud. 71, 1044–1055 (2013)CrossRefGoogle Scholar
  23. 23.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979) zbMATHGoogle Scholar
  24. 24.
    van den Elzen, S., Holten, D., Blaas, J., van Wijk, J.J.: Reordering massive sequence views: enabling temporal and structural analysis of dynamic networks. In: Proceedings of the IEEE Pacific Visualization Symposium, pp. 33–40 (2013)Google Scholar
  25. 25.
    Schulz, H.: Treevis.net: a tree visualization reference. IEEE Comput. Graphic. Appl. 31, 11–15 (2011)CrossRefGoogle Scholar
  26. 26.
    Burch, M., Konevtsova, N., Heinrich, J., Höferlin, M., Weiskopf, D.: Evaluation of traditional, orthogonal, and radial tree diagrams by an eye tracking study. IEEE Trans. Vis. Comput. Graphic. 17, 2440–2448 (2011)CrossRefGoogle Scholar
  27. 27.
    Burch, M., Weiskopf, D.: Visualizing dynamic quantitative data in hierarchies - TimeEdgeTrees: Attaching dynamic weights to tree edges. In: Proceedings of the International Conference on Information Visualization Theory and Applications, pp. 177–186 (2011)Google Scholar
  28. 28.
    Blascheck, T., Kurzhals, K., Raschke, M., Burch, M., Weiskopf, D., Ertl, T.: State-of-the-Art of Visualization for Eye Tracking Data. In: EuroVis - STARs, pp. 63–82 (2014)Google Scholar
  29. 29.
    Blascheck, T., Burch, M., Raschke, M., Weiskopf, D.: Challenges and perspectives in big eye-movement data visual analytics. In: Proceedings of the 1st International Symposium on Big Data Visual Analytics (2015)Google Scholar
  30. 30.
    Kurzhals, K., Fisher, B.D., Burch, M., Weiskopf, D.: Evaluating visual analytics with eye tracking. In: Proceedings of the Fifth Workshop on Beyond Time and Errors: Novel Evaluation Methods for Visualization, BELIV, pp. 61–69 (2014)Google Scholar
  31. 31.
    Burch, M., Andrienko, G.L., Andrienko, N.V., Höferlin, M., Raschke, M., Weiskopf, D.: Visual task solution strategies in tree diagrams. In: Proceedings of IEEE Pacific Visualization Symposium, pp. 169–176 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.VISUSUniversity of StuttgartStuttgartGermany

Personalised recommendations