Advertisement

Generalized Wishart Processes for Interpolation Over Diffusion Tensor Fields

  • Hernán Darío Vargas CardonaEmail author
  • Mauricio A. Álvarez
  • Álvaro A. Orozco
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9475)

Abstract

Diffusion Magnetic Resonance Imaging (dMRI) is a non-invasive tool for watching the microstructure of fibrous nerve and muscle tissue. From dMRI, it is possible to estimate 2-rank diffusion tensors imaging (DTI) fields, that are widely used in clinical applications: tissue segmentation, fiber tractography, brain atlas construction, brain conductivity models, among others. Due to hardware limitations of MRI scanners, DTI has the difficult compromise between spatial resolution and signal noise ratio (SNR) during acquisition. For this reason, the data are often acquired with very low resolution. To enhance DTI data resolution, interpolation provides an interesting software solution. The aim of this work is to develop a methodology for DTI interpolation that enhance the spatial resolution of DTI fields. We assume that a DTI field follows a recently introduced stochastic process known as a generalized Wishart process (GWP), which we use as a prior over the diffusion tensor field. For posterior inference, we use Markov Chain Monte Carlo methods. We perform experiments in toy and real data. Results of GWP outperform other methods in the literature, when compared in different validation protocols.

Keywords

Apparent Diffusivity Coefficient Diffusion Tensor Imaging Diffusion Tensor Tensor Field Markov Chain Monte Carlo Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

H.D. Vargas Cardona is funded by Colciencias under the program: formación de alto nivel para la ciencia, la tecnología y la innovación - Convocatoria 617 de 2013. This research has been developed under the project financed by Colciencias with code 1110-657-40687.

References

  1. 1.
    Basser, P., Mattiello, J., Le Bihan, D.: Estimation of the effective self-diffusion tensor from the nmr spin echo. J. Magn. Reson. 103, 247–254 (1994)CrossRefGoogle Scholar
  2. 2.
    Yang, F., Zhu, Y.M., Luo, J.H., Robini, M., Liu, J., Croisille, P.: A comparative study of different level interpolations for improving spatial resolution in diffusion tensor imaging. IEEE J. Biomed. Health Inform. 18, 1317–1327 (2014)CrossRefGoogle Scholar
  3. 3.
    Fletcher, P., Joshi, S.: Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Process. 87, 250–262 (2007)zbMATHCrossRefGoogle Scholar
  4. 4.
    Bi, C., Takahashi, S., Fujishiro, I.: Interpolating 3D diffusion tensors in 2D planar domain by locating degenerate lines. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Chung, R., Hammoud, R., Hussain, M., Kar-Han, T., Crawfis, R., Thalmann, D., Kao, D., Avila, L. (eds.) ISVC 2010, Part I. LNCS, vol. 6453, pp. 328–337. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  5. 5.
    Barmpoutis, A., Vemuri, B., Shepherd, T., Forder, J.: Tensor splines for interpolation and approximation of dt-mri with applications to segmentation of isolated rat hippocampi. IEEE Trans. Med. Imaging 26, 1537–1546 (2007)CrossRefGoogle Scholar
  6. 6.
    Hotz, I., Sreevalsan-Nair, J., Hamann, B.: Tensor field reconstruction based on eigenvector and eigenvalue interpolation. In: Scientific Visualization: Advanced Concepts, pp. 110–123 (2010)Google Scholar
  7. 7.
    Pajevic, S.: A continuous tensor field approximation of discrete dt-mri data for extracting microstructural and architectural features of tissue. J. Magn. Reson. 154, 85–100 (2002)CrossRefGoogle Scholar
  8. 8.
    Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Res. Med. 56, 411–421 (2006)CrossRefGoogle Scholar
  9. 9.
    Kindlmann, G., Estepar, R., Niethammer, M., Haker, S., Westin, C.: Geodesic-loxodromes for diffusion tensor interpolation and difference measurement. Med. Image Comput. Comput. Assist. Interv. 10, 1–9 (2007)Google Scholar
  10. 10.
    Yang, F., Zhu, Y.M., Magnin, I., Luo, J.H., Croisille, P., Kingsley, P.: Feature-based interpolation of diffusion tensor fields and application to human cardiac dt-mri. Med. Image Anal. 16, 459–481 (2012)CrossRefGoogle Scholar
  11. 11.
    Chang, I.S., Shun-Ren, X.: Diffusion tensor interpolation profile control using non-uniform motion on a riemannian geodesic. Comput. Electron. 13, 90–98 (2012)Google Scholar
  12. 12.
    Wilson, A., Ghahramani, Z.: Generalised wishart processes. In: UAI 2011, pp. 736–744 (2011)Google Scholar
  13. 13.
    Tanner, J., Stejskal, E.: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Physiol. 42, 288–292 (1965)CrossRefGoogle Scholar
  14. 14.
    Basser, P.: Inferring microstructural features and the physiological state of tissues from diffusion weighted images. NMR Biomed. 8, 333–344 (1995)CrossRefGoogle Scholar
  15. 15.
    Lin-Chin, C., Jones, D., Pierpaoli, C.: RESTORE: robust estimation of tensors by outlier rejection. Magn. Reson. Med. 53, 1088–1095 (2005)CrossRefGoogle Scholar
  16. 16.
    Murray, I., Adams, R., Mackay, D.: Elliptical slice sampling. JMLR 9, 541–548 (2010)Google Scholar
  17. 17.
    Barmpoutis, A., Vemuri, B.: A unified framework for estimating diffusion tensors of any order with symmetric positive-definite constraints. In: Proceedings of ISBI 2010: IEEE International Symposium on Biomedical Imaging, pp. 1385–1388 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Hernán Darío Vargas Cardona
    • 1
    Email author
  • Mauricio A. Álvarez
    • 1
  • Álvaro A. Orozco
    • 1
  1. 1.Faculty of EngineeringUniversidad Tecnológica de PereiraPereiraColombia

Personalised recommendations