Advertisement

DAcImPro: A Novel Database of Acquired Image Projections and Its Application to Object Recognition

  • Aleksandr SetkovEmail author
  • Fabio Martinez Carillo
  • Michèle Gouiffès
  • Christian Jacquemin
  • Maria Vanrell
  • Ramon Baldrich
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9475)

Abstract

Projector-camera systems are designed to improve the projection quality by comparing original images with their captured projections, which is usually complicated due to high photometric and geometric variations. Many research works address this problem using their own test data which makes it extremely difficult to compare different proposals. This paper has two main contributions. Firstly, we introduce a new database of acquired image projections (DAcImPro) that, covering photometric and geometric conditions and providing data for ground-truth computation, can serve to evaluate different algorithms in projector-camera systems. Secondly, a new object recognition scenario from acquired projections is presented, which could be of a great interest in such domains, as home video projections and public presentations. We show that the task is more challenging than the classical recognition problem and thus requires additional pre-processing, such as color compensation or projection area selection.

Keywords

Projector-camera systems Feature descriptors Object recognition 

Notes

Acknowledgments

This project has been partially funded by MINECO (TIN2014-61068-R).

References

  1. 1.
    Bimber, O., Emmerling, A., Klemmer, T.: Embedded entertainment with smart projectors. IEEE Comput. 38(1), 48–55 (2005)CrossRefGoogle Scholar
  2. 2.
    Bimber, O., Raskar, R.: Spatial Augmented Reality: Merging Real and Virtual Worlds. CRC Press, New York (2005)CrossRefGoogle Scholar
  3. 3.
    Chandraker, M., Bai, J., Ng, T.-T., Ramamoorthi, R.: On the duality of forward and inverse light transport. IEEE TPAMI 33, 2122–2128 (2011)CrossRefGoogle Scholar
  4. 4.
    Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM TIST 2(3), 27:1–27:27 (2011). http://www.csie.ntu.edu.tw/cjlin/libsvm Google Scholar
  5. 5.
    Demirkus, M., Clark, J.J., Arbel, T.: Robust semi-automatic head pose labeling for real-world face video sequences. Multimed. Tools Appl. 70(1), 495–523 (2014). doi: 10.1007/s11042-012-1352-1 CrossRefGoogle Scholar
  6. 6.
    Drouin, M.-A., Jodoin, P.-M., Premont, J.: Camera-projector matching using an unstructured video stream. In: 2010 IEEE Computer Society Conference on CVPR Workshops (CVPRW), vol. 33, p. 40 (2010)Google Scholar
  7. 7.
    Fujii, K., Grossberg, M.D., Nayar, S.K.: A projector-camera system with real-time photometric adaptation for dynamic environments. In: 2005 IEEE Computer Society Conference on (CVPR 2005), San Diego, CA, USA, 20–26 June 2005, pp. 814–821 (2005)Google Scholar
  8. 8.
    Kooi, T., de Sorbier, F., Saito, H.: Colour descriptors for tracking in spatial augmented reality. In: Park, J.-I., Kim, J. (eds.) ACCV Workshops 2012, Part II. LNCS, vol. 7729, pp. 387–399. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Kumar, V., Namboodiri, A.M., Jawahar, C.V.: Face recognition in videos by label propagation. In: 22nd ICPR 2014, Stockholm, Sweden, 24–28 August 2014, pp. 303–308 (2014)Google Scholar
  10. 10.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  11. 11.
    Ng, T.-T., Pahwa, R.S., Bai, J., Quek, T.Q.S., Tan, K.-H.: Radiometric compensation using stratified inverses. In: IEEE 12th ICCV 2009, Kyoto, Japan, 27 September – 4 October 2009, pp. 1889–1894 (2009)Google Scholar
  12. 12.
    Ng, T.-T., Pahwa, R.S., Bai, J., Tan, K.-H., Ramamoorthi, R.: From the rendering equation to stratified light transport inversion. Int. J. Comput. Vis. 96(2), 235–251 (2012)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Ortiz, E.G., Wright, A., Shah, M.: Face recognition in movie trailers via mean sequence sparse representation-based classification. In: 2013 IEEE Conference on CVPR, Portland, OR, USA, 23–28 June 2013, pp. 3531–3538 (2013)Google Scholar
  14. 14.
    Park, H., Lee, M.-H., Kim, S.-J., Park, J.-I.: Contrast enhancement in direct-projected augmented reality. In: Proceedings of the 2006 IEEE International Conference on Multimedia and Expo, ICME 2006, Toronto, Ontario, Canada, 9–12 July 2006, pp. 1313–1316 (2006)Google Scholar
  15. 15.
    Park, H., Lee, M.-H., Seo, B.-K., Park, J.-I., Jeong, M.-S., Park, T.-S., Lee, Y., Ryong Kim, S.: Simultaneous geometric and radiometric adaptation to dynamic surfaces with a mobile projector-camera system. IEEE Trans. Circ. Syst. Video Technol. 18(1), 110–115 (2008)CrossRefGoogle Scholar
  16. 16.
    Setkov, A., Gouiffès, M., Jacquemin, C.: Color invariant feature matching for image geometric correction. In: 6th International Conference on Computer Vision/Computer Graphics Collaboration Techniques and Applications, MIRAGE 2013, Berlin, Germany, 06–07 June 2013, pp. 7:1–7:8 (2013)Google Scholar
  17. 17.
    van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluating color descriptors for object and scene recognition. IEEE TPAMI 32(9), 1582–1596 (2010)CrossRefGoogle Scholar
  18. 18.
    Yamanaka, T., Sakaue, F., Sato, J.: Adaptive image projection onto non-planar screen using projector-camera systems. In: 20th ICPR 2010, Istanbul, Turkey, 23–26 August 2010, pp. 307–310 (2010)Google Scholar
  19. 19.
    Zollmann, S., Langlotz, T., Bimber, O.: Passive-active geometric calibration for view-dependent projections onto arbitrary surfaces. JVRB J. Virtual Reality Broadcast. 4(6), 10 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Aleksandr Setkov
    • 1
    Email author
  • Fabio Martinez Carillo
    • 2
    • 3
  • Michèle Gouiffès
    • 1
  • Christian Jacquemin
    • 1
  • Maria Vanrell
    • 4
  • Ramon Baldrich
    • 4
  1. 1.LIMSI, CNRSUniversity Paris-Sud, Université Paris-SaclayOrsayFrance
  2. 2.LIMSI, CNRSUniversité Paris-SaclayOrsayFrance
  3. 3.U2ISENSTA ParisTech, Université Paris-SaclayPalaiseauFrance
  4. 4.Computer Vision CenterUniversitat Autonoma de BarcelonaCerdanyolaSpain

Personalised recommendations