International Symposium on Visual Computing

Advances in Visual Computing pp 82-91 | Cite as

Extracting Surface Geometry from Particle-Based Fracture Simulations

  • Chakrit Watcharopas
  • Yash Sapra
  • Robert Geist
  • Joshua A. Levine
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9474)


This paper describes an algorithm for fracture surface extraction from particle-based simulations of brittle fracture. We rely on a tetrahedral mesh of the rest configuration particles and use a simple, table-lookup approach to produce triangulated fracture geometry for each rest configuration tetrahedron based on its configuration of broken edges. Subsequently, these triangle vertices are transformed with a per particle transformation to obtain a fracture surface in world space that has minimal deformation and also preserves temporal coherence. The results show that our approach is effective at producing realistic fractures, and capable of extracting fracture surfaces from the complex simulation.


  1. 1.
    Terzopoulos, D., Fleischer, K.W.: Modeling inelastic deformation: viscolelasticity, plasticity, fracture. Comput. Graph. 22(4), 269–278 (1988)CrossRefGoogle Scholar
  2. 2.
    Norton, A., Turk, G., Bacon, R., Gerth, J., Sweeney, P.: Animation of fracture by physical modeling. Visual Comput. 7, 210–219 (1991)CrossRefGoogle Scholar
  3. 3.
    O’Brien, J.F., Hodgins, J.K.: Graphical modeling and animation of brittle fracture. In: SIGGRAPH, pp. 137–146 (1999)Google Scholar
  4. 4.
    O’Brien, J.F., Bargteil, A.W., Hodgins, J.K.: Graphical modeling and animation of ductile fracture. ACM Trans. Graph. 21, 291–294 (2002)Google Scholar
  5. 5.
    Müller, M., McMillan, L., Dorsey, J., Jagnow, R.: Computer animation and simulation 2001. In: Magnenat-Thalmann, N., Thalmann, D. (eds.) Real-time Simulation of Deformation and Fracture of Stiff Materials. Eurographics, pp. 113–124. Springer, Vienna (2001)Google Scholar
  6. 6.
    Bao, Z., Hong, J.M., Teran, J., Fedkiw, R.: Fracturing rigid materials. IEEE Trans. Visual. Comput. Graphics 13, 370–378 (2007)CrossRefGoogle Scholar
  7. 7.
    Parker, E.G., O’Brien, J.F.: Real-time deformation and fracture in a game environment. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 165–175. ACM (2009)Google Scholar
  8. 8.
    Koschier, D., Lipponer, S., Bender, J.: Adaptive tetrahedral meshes for brittle fracture simulation. In: Proceedings of the 2014 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association (2014)Google Scholar
  9. 9.
    Hirota, K., Tanoue, Y., Kaneko, T.: Simulation of three-dimensional cracks. Visual Comput. 16, 371–378 (2000)MATHCrossRefGoogle Scholar
  10. 10.
    Levine, J., Bargteil, A., Corsi, C., Tessendorf, J., Geist, R.: A peridynamic perspective on spring-mass fracture. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. (2014)Google Scholar
  11. 11.
    Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., Guibas, L.J.: Meshless animation of fracturing solids. ACM Trans. Graph. (TOG) 24, 957–964 (2005). ACMCrossRefGoogle Scholar
  12. 12.
    Akinci, G., Ihmsen, M., Akinci, N., Teschner, M.: Parallel surface reconstruction for particle-based fluids. Comp. Graph. Forum 31, 1797–1809 (2012)CrossRefGoogle Scholar
  13. 13.
    Bhattacharya, H., Gao, Y., Bargteil, A.W.: A level-set method for skinning animated particle data. In: Symposium on Computer Animation, pp. 17–24 (2011)Google Scholar
  14. 14.
    Yu, J., Turk, G.: Reconstructing surfaces of particle-based fluids using anisotropic kernels. ACM Trans. Graph. (TOG) 32, 5 (2013)CrossRefGoogle Scholar
  15. 15.
    Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. In: ACM siggraph computer graphics, vol. 21, pp. 163–169. ACM (1987)Google Scholar
  16. 16.
    Nielson, G.M., Franke, R.: Computing the separating surface for segmented data. In: IEEE Proceedings on Visualization 1997, pp. 229–233 (1997)Google Scholar
  17. 17.
    Bronson, J., Levine, J., Whitaker, R., et al.: Lattice cleaving: a multimaterial tetrahedral meshing algorithm with guarantees. IEEE Trans. Visual. Comput. Graphics 20, 223–237 (2014)CrossRefGoogle Scholar
  18. 18.
    Kabsch, W.: A discussion of the solution for the best rotation to relate two sets of vectors. Acta Crystallogr. A 34, 827–828 (1978)CrossRefGoogle Scholar
  19. 19.
    Twigg, C.D., Kačić-Alesić, Z.: Point cloud glue: constraining simulations using the procrustes transform. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 45–54 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Chakrit Watcharopas
    • 1
    • 3
  • Yash Sapra
    • 2
  • Robert Geist
    • 1
  • Joshua A. Levine
    • 1
  1. 1.Clemson UniversityClemsonUSA
  2. 2.McMaster UniversityHamiltonCanada
  3. 3.Kasetsart UniversityBangkokThailand

Personalised recommendations