Advertisement

3D Perception for Autonomous Robot Exploration

  • Jiejun XuEmail author
  • Kyungnam Kim
  • Lei Zhang
  • Deepak Khosla
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9474)

Abstract

We propose an online 3D sensor-based algorithm for autonomous robot exploration in an indoor setting. Our algorithm consists of two modules, a proactive open space detection module, and a reactive obstacle avoidance module. The former, which is the primary contribution of the paper, is responsible for guiding the robot towards meaningful open spaces based on high level navigation goals. This generally translates to identifying open doors or corridor vanishing points in a typical indoor setting. The latter is a necessary component that enables safe autonomous exploration by preventing the robot from colliding with objects along the moving path. Assuming a 3D range sensor is mounted on the robot, it continues to scan and acquire signal from its surroundings as it explores in an unknown environment. From each 3D scan, the two modules function cooperatively to identify any open spaces and obstacles within the generated point cloud using robust geometric estimation methods. Combination of the two modules provides the basic capability of a autonomous robot to explore an unknown environment freely. Experimental results with the proposed algorithm on both real world and simulated data are promising.

Notes

Acknowledgements

This material is based upon work supported by Defense Advanced Research Projects Agency under contract numbers W31P4Q-08-C-0264 and HR0011-09-C-0001. Any opinions, findings and conclusion or recommendations expressed in this material are those of the author and do not necessarily reflect the view of the Defense Advanced Research Projects Agency. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

References

  1. 1.
    González-Baños, H.H., Latombe, J.C.: Navigation strategies for exploring indoor environments. I. J. Robotic Res. 21, 829–848 (2002)CrossRefGoogle Scholar
  2. 2.
    Dudek, G., Jenkin, M.R.M.: Computational principles of mobile robotics. Cambridge University Press, New York (2000)zbMATHGoogle Scholar
  3. 3.
    Lai, J., Mejías, L., Ford, J.J.: Airborne vision-based collision-detection system. J. Field Robot. 28, 137–157 (2011)zbMATHCrossRefGoogle Scholar
  4. 4.
    Biswas, J., Veloso, M.M.: Depth camera based localization and navigation for indoor mobile robots. In: RGB-D Workshop in Robotics: Science and Systems (RSS) (2011)Google Scholar
  5. 5.
    Zingg, S., Scaramuzza, D., Weiss, S., Siegwart, R.: MAV navigation through indoor corridors using optical flow. In: ICRA. IEEE (2010)Google Scholar
  6. 6.
    Bills, C., Chen, J., Saxena, A.: Autonomous MAV flight in indoor environments using single image perspective cues. In: ICRA, pp. 5776–5783. IEEE (2011)Google Scholar
  7. 7.
    Fraundorfer, F., Heng, L., Honegger, D., Lee, G.H., Meier, L., Tanskanen, P., Pollefeys, M.: Vision-based autonomous mapping and exploration using a quadrotor mav. In: IROS. (2012)Google Scholar
  8. 8.
    Meier, L., Tanskanen, P., Heng, L., Lee, G.H., Fraundorfer, F., Pollefeys, M.: Pixhawk: a micro aerial vehicle design for autonomous flight using onboard computer vision. Auton. Robots 33, 21–39 (2012)CrossRefGoogle Scholar
  9. 9.
    Celik, K., Chung, S.J., Clausman, M., Somani, A.K.: Monocular vision slam for indoor aerial vehicles. In: IROS. IEEE (2009)Google Scholar
  10. 10.
    Cruz, L., Lucio, D., Velho, L.: Kinect and RGBD images: challenges and applications. In: SIBGRAPI Tutorials (2012)Google Scholar
  11. 11.
    Herbst, E., Ren, X., Fox, D.: RGB-D flow: dense 3-D motion estimation using color and depth. In: ICRA, pp. 2276–2282 (2013)Google Scholar
  12. 12.
    Shen, S., Michael, N., Kumar, V.: Autonomous indoor 3D exploration with a micro-aerial vehicle. In: ICRA, pp. 9–15. IEEE (2012)Google Scholar
  13. 13.
    Murillo, A.C., Kosecká, J., Guerrero, J.J., Sagüés, C.: Visual door detection integrating appearance and shape cues. Robot. Auton. Syst. 56, 512–521 (2008)CrossRefGoogle Scholar
  14. 14.
    Tian, Y., Yang, X., Arditi, A.: Computer vision-based door detection for accessibility of unfamiliar environments to blind persons. In: Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A. (eds.) ICCHP 2010, Part II. LNCS, vol. 6180, pp. 263–270. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  15. 15.
    Sekkal, R., Pasteau, F., Babel, M., Brun, B., Leplumey, I.: Simple monocular door detection and tracking. In: IEEE International Conference on Image Processing, ICIP 2013, Melbourne, Australie (2013)Google Scholar
  16. 16.
    Fernández-Caramés, C., Moreno, V., Curto, B., Rodríguez-Aragón, J., Serrano, F.: A real-time door detection system for domestic robotic navigation. J. Intell. Robot. Syst. 76(1), 119–136 (2013)CrossRefGoogle Scholar
  17. 17.
    Rusu, R.B., Meeussen, W., Chitta, S., Beetz, M.: Laser-based perception for door and handle identification. In: International Conference on Advanced Robotics (ICAR) (2009)Google Scholar
  18. 18.
    Derry, M., Argall, B.: Automated doorway detection for assistive shared-control wheelchairs. In: ICRA, pp. 1254–1259 (2013)Google Scholar
  19. 19.
    Ross, S., Melik-Barkhudarov, N., Shankar, K.S., Wendel, A., Dey, D., Bagnell, J.A., Hebert, M.: Learning monocular reactive uav control in cluttered natural environments. In: CoRR (2012)Google Scholar
  20. 20.
    Meagher, D.: Geometric modeling using octree encoding. Comput. Graph. Image Process. 19, 129–147 (1982)CrossRefGoogle Scholar
  21. 21.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Lange, S., Sünderhauf, N., Neubert, P., Drews, S., Protzel, P.: Autonomous corridor flight of a UAV using a low-cost and light-weight RGB-D camera. In: Rueckert, U., Joaquin, S., Felix, W. (eds.) Advances in Autonomous Mini Robots. Non-series, vol. 101, pp. 183–192. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Pasteau, F., Babel, M., Sekkal, R.: Corridor following wheelchair by visual servoing. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2013, Tokyo, Japon (2013)Google Scholar
  24. 24.
    Krumm, J.: Intersection of two planes (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jiejun Xu
    • 1
    Email author
  • Kyungnam Kim
    • 1
  • Lei Zhang
    • 1
  • Deepak Khosla
    • 1
  1. 1.HRL Laboratories, LLCMalibuUSA

Personalised recommendations