Thermal Infrared Image Processing to Assess Heat Generated by Magnetic Nanoparticles for Hyperthermia Applications

  • Raquel O. Rodrigues
  • Helder T. Gomes
  • Rui Lima
  • Adrián M.T. Silva
  • Pedro J.S. Rodrigues
  • Pedro B. Tavares
  • João Manuel R.S. Tavares
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9474)


Magnetic fluid hyperthermia (MFH) is considered a promising therapeutic technique for the treatment of cancer cells, in which magnetic nanoparticles (MNPs) with superparamagnetic behavior generate mild-temperatures under an AC magnetic field to selectively destroy the abnormal cancer cells, in detriment of the healthy ones. However, the poor heating efficiency of most NMPs and the imprecise experimental determination of the temperature field during the treatment, are two of the majors drawbacks for its clinical advance. Thus, in this work, different MNPs were developed and tested under an AC magnetic field (~1.10 kA/m and 200 kHz), and the heat generated by them was assessed by an infrared camera. The resulting thermal images were processed in MATLAB after the thermographic calibration of the infrared camera. The results show the potential to use this thermal technique for the improvement and advance of MFH as a clinical therapy.


Thermal imaging Image calibration Image processing 



R.O.R acknowledges the PhD scholarship SFRH/BD/97658/2013 granted by FCT – Fundação para a Ciência e a Tecnologia, in Portugal. A.M.T.S acknowledges the FCT Investigator 2013 Programme (IF/01501/2013), with financing from the European Social Fund and the Human Potential Operational Programme.


  1. 1.
    Chicheł, A., Skowronek, J., Kubaszewska, M., Kanikowski, M.: Hyperthermia – description of a method and a review of clinical applications. Rep. Pract. Oncol. Radiother. 12, 267–275 (2007)CrossRefGoogle Scholar
  2. 2.
    Laurent, S., Dutz, S., Häfeli, U.O., Mahmoudi, M.: Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Adv. Colloid Interface Sci. 166, 8–23 (2011)CrossRefGoogle Scholar
  3. 3.
    Deatsch, A.E., Evans, B.A.: Heating efficiency in magnetic nanoparticle hyperthermia. J. Magn. Magn. Mater. 354, 163–172 (2014)CrossRefGoogle Scholar
  4. 4.
    Ito, A., Shinkai, M., Honda, H., Kobayashi, T.: Medical application of functionalized magnetic nanoparticles. J. Biosci. Bioeng. 100, 1–11 (2005)CrossRefGoogle Scholar
  5. 5.
    Di Corato, R., Espinosa, A., Lartigue, L., Tharaud, M., Chat, S., Pellegrino, T., Ménager, C., Gazeau, F., Wilhelm, C.: Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs. Biomaterials 35, 6400–6411 (2014)CrossRefGoogle Scholar
  6. 6.
    COST: Action TD1402 - Multifunctional Nanoparticles for Magnetic Hyperthermia and Indirect Radiation Therapy (RADIOMAG) 054/14 Brussels (2014)Google Scholar
  7. 7.
    Calin, M.A., Mologhianu, G., Savastru, R., Calin, M.R., Brailescu, C.M.: A review of the effectiveness of thermal infrared imaging in the diagnosis and monitoring of knee diseases. Infrared Phys. Technol. 69, 19–25 (2015)CrossRefGoogle Scholar
  8. 8.
    Wei, H., Yang, W., Xi, Q., Chen, X.: Preparation of Fe3O4@graphene oxide core–shell magnetic particles for use in protein adsorption. Mater. Lett. 82, 224–226 (2012)CrossRefGoogle Scholar
  9. 9.
    Bento, D.: Modelação matemática da variação da temperatura no pé. Master thesis, Polytechnic Institute of Bragança, Bragança (2011) (in Portuguese)Google Scholar
  10. 10.
    Liu, Q., Barrón, V., Torrent, J., Qin, H., Yu, Y.: The magnetism of micro-sized hematite explained. Phys. Earth Planet. Inter. 183, 387–397 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Raquel O. Rodrigues
    • 1
  • Helder T. Gomes
    • 1
  • Rui Lima
    • 2
    • 3
    • 4
  • Adrián M.T. Silva
    • 5
  • Pedro J.S. Rodrigues
    • 2
  • Pedro B. Tavares
    • 6
  • João Manuel R.S. Tavares
    • 7
  1. 1.LCM – Laboratory of Catalysis and Materials – Associate Laboratory LSRE-LCMPolytechnic Institute of BragançaBragançaPortugal
  2. 2.Polytechnic Institute of BragançaBragançaPortugal
  3. 3.Mechanical Engineering DepartmentUniversity of MinhoGuimarãesPortugal
  4. 4.CEFT, Faculdade de EngenhariaUniversidade do PortoPortoPortugal
  5. 5.LCM – Laboratory of Catalysis and Materials – Associate Laboratory LSRE-LCM, Faculdade de EngenhariaUniversidade do PortoPortoPortugal
  6. 6.CQVR, Chemical DepartmentUniversidade de Trás-os-Montes e Alto DouroVila RealPortugal
  7. 7.Departamento de Engenharia Mecânica, Faculdade de Engenharia, Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia IndustrialUniversidade do PortoPortoPortugal

Personalised recommendations