Advertisement

Role of Lipoxygenases in Pathogenesis of Cancer

  • J. RoosEmail author
  • B. Kühn
  • J. Fettel
  • I. V. Maucher
  • M. Ruthardt
  • A. Kahnt
  • T. Vorup-Jensen
  • C. Matrone
  • D. Steinhilber
  • T. J. MaierEmail author
Chapter
Part of the Progress in Inflammation Research book series (PIR)

Abstract

Increasing evidence in literature implicates lipoxygenases as players in the growth of several solid tumor types, including pancreatic, colorectal, prostate and breast cancer. Recently, a role of 5-lipoxygenase was reported in hemato-oncological tumors, such as chronic myeloid leukemia and acute myeloid leukemia. Whereas 5-lipoxygenase and 12-lipoxygenase are generally recognized as pro-carcinogenic, the related enzyme 15-lipoxygenase-2 is down-regulated in malignant tissues, considered to function as a tumor suppressor and to inhibit tumour growth. The role of 15-lipoxygenase-1 is still subject of controversy in the literature.

The following comprehensive review summarizes experimental findings arguing for a role of lipoxygenases in several most-concerned tumor types, including pancreatic cancer, breast cancer, prostate cancer, colorectal cancer and leukemia. Furthermore, we describe own experimental evidence raising question on the use of cytotoxic effects by lipoxygenase inhibitors or mitogenic effects by lipoxygenase-derived mediators in cell culture assays as argument for a tumorigenic role of lipoxygenases and their products in cancer.

Keywords

5-Lipoxygenase Leukotrienes Tumor cell Cell cycle Apoptosis Leukemia 

Notes

Acknowledgement

This work was supported by the German Research Foundation (DFG-MA-5825/1-1 and Sonderforschungsbereich SFB 1039) and the Else Kröner-Fresenius-Stiftung (stipend of the graduate school “Translational Research Innovation–Pharma”). T.J. Maier is recipient of a Heisenberg fellowship of the German Research Foundation (DFG-MA-5825/2-1).

References

  1. 1.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi: 10.1016/j.cell.2011.02.013 PubMedCrossRefGoogle Scholar
  2. 2.
    Avis I, Hong SH, Martinez A, Moody T, Choi YH, Trepel J, Das R, Jett M, Mulshine JL (2001) Five-lipoxygenase inhibitors can mediate apoptosis in human breast cancer cell lines through complex eicosanoid interactions. FASEB J 15(11):2007–2009PubMedGoogle Scholar
  3. 3.
    Chen X, Sood S, Yang CS, Li N, Sun Z (2006) Five-lipoxygenase pathway of arachidonic acid metabolism in carcinogenesis and cancer chemoprevention. Curr Cancer Drug Targets 6(7):613–622PubMedCrossRefGoogle Scholar
  4. 4.
    Hong SH, Avis I, Vos MD, Martinez A, Treston AM, Mulshine JL (1999) Relationship of arachidonic acid metabolizing enzyme expression in epithelial cancer cell lines to the growth effect of selective biochemical inhibitors. Cancer Res 59(9):2223–2228PubMedGoogle Scholar
  5. 5.
    Hennig R, Ding XZ, Tong WG, Schneider MB, Standop J, Friess H, Buchler MW, Pour PM, Adrian TE (2002) 5-Lipoxygenase and leukotriene B(4) receptor are expressed in human pancreatic cancers but not in pancreatic ducts in normal tissue. Am J Pathol 161(2):421–428PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Romano M, Catalano A, Nutini M, D’Urbano E, Crescenzi C, Claria J, Libner R, Davi G, Procopio A (2001) 5-lipoxygenase regulates malignant mesothelial cell survival: involvement of vascular endothelial growth factor. FASEB J 15(13):2326–2336. doi: 10.1096/fj.01-0150com PubMedCrossRefGoogle Scholar
  7. 7.
    Krieg P, Furstenberger G (2014) The role of lipoxygenases in epidermis. Biochim Biophys Acta 1841(3):390–400. doi: 10.1016/j.bbalip.2013.08.005 PubMedCrossRefGoogle Scholar
  8. 8.
    Matsuyama M, Yoshimura R, Mitsuhashi M, Tsuchida K, Takemoto Y, Kawahito Y, Sano H, Nakatani T (2005) 5-Lipoxygenase inhibitors attenuate growth of human renal cell carcinoma and induce apoptosis through arachidonic acid pathway. Oncol Rep 14(1):73–79PubMedGoogle Scholar
  9. 9.
    Matsuyama M, Yoshimura R, Tsuchida K, Takemoto Y, Segawa Y, Shinnka T, Kawahito Y, Sano H, Nakatani T (2004) Lipoxygenase inhibitors prevent urological cancer cell growth. Int J Mol Med 13(5):665–668PubMedGoogle Scholar
  10. 10.
    van Rossum GS, Bijvelt JJ, van den Bosch H, Verkleij AJ, Boonstra J (2002) Cytosolic phospholipase A2 and lipoxygenase are involved in cell cycle progression in neuroblastoma cells. Cell Mol Life Sci 59(1):181–188PubMedCrossRefGoogle Scholar
  11. 11.
    Catalano A, Procopio A (2005) New aspects on the role of lipoxygenases in cancer progression. Histol Histopathol 20(3):969–975PubMedGoogle Scholar
  12. 12.
    Ding XZ, Tong WG, Adrian TE (2003) Multiple signal pathways are involved in the mitogenic effect of 5(S)-HETE in human pancreatic cancer. Oncology 65(4):285–294PubMedCrossRefGoogle Scholar
  13. 13.
    Tong WG, Ding XZ, Talamonti MS, Bell RH, Adrian TE (2005) LTB4 stimulates growth of human pancreatic cancer cells via MAPK and PI-3 kinase pathways. Biochem Biophys Res Commun 335(3):949–956PubMedCrossRefGoogle Scholar
  14. 14.
    Sveinbjornsson B, Rasmuson A, Baryawno N, Wan M, Pettersen I, Ponthan F, Orrego A, Haeggstrom JZ, Johnsen JI, Kogner P (2008) Expression of enzymes and receptors of the leukotriene pathway in human neuroblastoma promotes tumor survival and provides a target for therapy. FASEB J 22(10):3525–3536PubMedCrossRefGoogle Scholar
  15. 15.
    Ding XZ, Iversen P, Cluck MW, Knezetic JA, Adrian TE (1999) Lipoxygenase inhibitors abolish proliferation of human pancreatic cancer cells. Biochem Biophys Res Commun 261(1):218–223PubMedCrossRefGoogle Scholar
  16. 16.
    Ghosh J, Myers CE (1998) Inhibition of arachidonate 5-lipoxygenase triggers massive apoptosis in human prostate cancer cells. Proc Natl Acad Sci U S A 95(22):13182–13187PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Wong BC, Wang WP, Cho CH, Fan XM, Lin MC, Kung HF, Lam SK (2001) 12-Lipoxygenase inhibition induced apoptosis in human gastric cancer cells. Carcinogenesis 22(9):1349–1354PubMedCrossRefGoogle Scholar
  18. 18.
    Anderson KM, Seed T, Meng J, Ou D, Alrefai WA, Harris JE (1998) Five-lipoxygenase inhibitors reduce Panc-1 survival: the mode of cell death and synergism of MK886 with gamma linolenic acid. Anticancer Res 18(2A):791–800PubMedGoogle Scholar
  19. 19.
    Ding XZ, Kuszynski CA, El-Metwally TH, Adrian TE (1999) Lipoxygenase inhibition induced apoptosis, morphological changes, and carbonic anhydrase expression in human pancreatic cancer cells. Biochem Biophys Res Commun 266(2):392–399. doi: 10.1006/bbrc.1999.1824 PubMedCrossRefGoogle Scholar
  20. 20.
    Hennig R, Ding XZ, Tong WG, Schneider MB, Standop J, Friess H, Buchler MW, Pour PM, Adrian TE (2002) 5-Lipoxygenase and leukotriene B(4) receptor are expressed in human pancreatic cancers but not in pancreatic ducts in normal tissue. Am J Pathol 161(2):421–428PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Zhou GX, Ding XL, Huang JF, Zhang H, Wu SB (2007) Suppression of 5-lipoxygenase gene is involved in triptolide-induced apoptosis in pancreatic tumor cell lines. Biochim Biophys Acta 1770(7):1021–1027. doi: 10.1016/j.bbagen.2007.03.002 PubMedCrossRefGoogle Scholar
  22. 22.
    Ding XZ, Talamonti MS, Bell RH Jr, Adrian TE (2005) A novel anti-pancreatic cancer agent, LY293111. Anticancer Drugs 16(5):467–473, 00001813-200506000-00001 [pii]PubMedCrossRefGoogle Scholar
  23. 23.
    Tong WG, Ding XZ, Talamonti MS, Bell RH, Adrian TE (2007) Leukotriene B4 receptor antagonist LY293111 induces S-phase cell cycle arrest and apoptosis in human pancreatic cancer cells. Anticancer Drugs 18(5):535–541. doi: 10.1097/01.cad.0000231477.22901.8a, 00001813-200706000-00003 [pii]PubMedCrossRefGoogle Scholar
  24. 24.
    Hennig R, Grippo P, Ding XZ, Rao SM, Buchler MW, Friess H, Talamonti MS, Bell RH, Adrian TE (2005) 5-Lipoxygenase, a marker for early pancreatic intraepithelial neoplastic lesions. Cancer Res 65(14):6011–6016PubMedCrossRefGoogle Scholar
  25. 25.
    Wenger FA, Kilian M, Achucarro P, Heinicken D, Schimke I, Guski H, Jacobi CA, Muller JM (2002) Effects of Celebrex and Zyflo on BOP-induced pancreatic cancer in Syrian hamsters. Pancreatology 2(1):54–60PubMedCrossRefGoogle Scholar
  26. 26.
    Wenger FA, Kilian M, Bisevac M, Khodadayan C, von Seebach M, Schimke I, Guski H, Muller JM (2002) Effects of Celebrex and Zyflo on liver metastasis and lipidperoxidation in pancreatic cancer in Syrian hamsters. Clin Exp Metastasis 19(8):681–687PubMedCrossRefGoogle Scholar
  27. 27.
    Baetz T, Eisenhauer E, Siu L, MacLean M, Doppler K, Walsh W, Fisher B, Khan AZ, de Alwis DP, Weitzman A, Brail LH, Moore M (2007) A phase I study of oral LY293111 given daily in combination with irinotecan in patients with solid tumours. Invest New Drugs 25(3):217–225. doi: 10.1007/s10637-006-9021-8 PubMedCrossRefGoogle Scholar
  28. 28.
    Saif MW, Oettle H, Vervenne WL, Thomas JP, Spitzer G, Visseren-Grul C, Enas N, Richards DA (2009) Randomized double-blind phase II trial comparing gemcitabine plus LY293111 versus gemcitabine plus placebo in advanced adenocarcinoma of the pancreas. Cancer J 15(4):339–343. doi: 10.1097/PPO.0b013e3181b36264, 00130404-200908000-00012 [pii]PubMedCrossRefGoogle Scholar
  29. 29.
    Janne PA, Paz-Ares L, Oh Y, Eschbach C, Hirsh V, Enas N, Brail L, von Pawel J (2014) Randomized, double-blind, phase II trial comparing gemcitabine-cisplatin plus the LTB4 antagonist LY293111 versus gemcitabine-cisplatin plus placebo in first-line non-small-cell lung cancer. J Thorac Oncol 9(1):126–131. doi: 10.1097/JTO.0000000000000037 PubMedCrossRefGoogle Scholar
  30. 30.
    Ding XZ, Tong WG, Adrian TE (2001) 12-lipoxygenase metabolite 12(S)-HETE stimulates human pancreatic cancer cell proliferation via protein tyrosine phosphorylation and ERK activation. Int J Cancer 94(5):630–636PubMedCrossRefGoogle Scholar
  31. 31.
    Tong WG, Ding XZ, Witt RC, Adrian TE (2002) Lipoxygenase inhibitors attenuate growth of human pancreatic cancer xenografts and induce apoptosis through the mitochondrial pathway. Mol Cancer Ther 1(11):929–935PubMedGoogle Scholar
  32. 32.
    Hennig R, Kehl T, Noor S, Ding XZ, Rao SM, Bergmann F, Furstenberger G, Buchler MW, Friess H, Krieg P, Adrian TE (2007) 15-lipoxygenase-1 production is lost in pancreatic cancer and overexpression of the gene inhibits tumor cell growth. Neoplasia 9(11):917–926PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kort WJ, Bijma AM, van Dam JJ, van der Ham AC, Hekking JM, van der Ingh HF, Meijer WS, van Wilgenburg MG, Zijlstra FJ (1992) Eicosanoids in breast cancer patients before and after mastectomy. Prostaglandins Leukot Essent Fatty Acids 45(4):319–327PubMedCrossRefGoogle Scholar
  34. 34.
    Natarajan R, Esworthy R, Bai W, Gu JL, Wilczynski S, Nadler J (1997) Increased 12-lipoxygenase expression in breast cancer tissues and cells. Regulation by epidermal growth factor. J Clin Endocrinol Metab 82(6):1790–1798. doi: 10.1210/jcem.82.6.3990 PubMedGoogle Scholar
  35. 35.
    Jiang WG, Douglas-Jones A, Mansel RE (2003) Levels of expression of lipoxygenases and cyclooxygenase-2 in human breast cancer. Prostaglandins Leukot Essent Fatty Acids 69(4):275–281, S0952327803001108 [pii]PubMedCrossRefGoogle Scholar
  36. 36.
    Jiang WG, Watkins G, Douglas-Jones A, Mansel RE (2006) Reduction of isoforms of 15-lipoxygenase (15-LOX)-1 and 15-LOX-2 in human breast cancer. Prostaglandins Leukot Essent Fatty Acids 74(4):235–245. doi: 10.1016/j.plefa.2006.01.009 PubMedCrossRefGoogle Scholar
  37. 37.
    Jiang WG, Douglas-Jones AG, Mansel RE (2006) Aberrant expression of 5-lipoxygenase-activating protein (5-LOXAP) has prognostic and survival significance in patients with breast cancer. Prostaglandins Leukot Essent Fatty Acids 74(2):125–134. doi: 10.1016/j.plefa.2005.10.005, S0952-3278(05)00176-6 [pii]PubMedCrossRefGoogle Scholar
  38. 38.
    Wang J, John EM, Ingles SA (2008) 5-lipoxygenase and 5-lipoxygenase-activating protein gene polymorphisms, dietary linoleic acid, and risk for breast cancer. Cancer Epidemiol Biomarkers Prev 17(10):2748–2754. doi: 10.1158/1055-9965.epi-08-0439 PubMedCrossRefGoogle Scholar
  39. 39.
    Wang J, John EM, Horn-Ross PL, Ingles SA (2008) Dietary fat, cooking fat, and breast cancer risk in a multiethnic population. Nutr Cancer 60(4):492–504. doi: 10.1080/01635580801956485 PubMedCrossRefGoogle Scholar
  40. 40.
    O’Flaherty JT, Rogers LC, Paumi CM, Hantgan RR, Thomas LR, Clay CE, High K, Chen YQ, Willingham MC, Smitherman PK, Kute TE, Rao A, Cramer SD, Morrow CS (2005) 5-Oxo-ETE analogs and the proliferation of cancer cells. Biochim Biophys Acta 1736(3):228–236. doi: 10.1016/j.bbalip.2005.08.009 PubMedCrossRefGoogle Scholar
  41. 41.
    Tong WG, Ding XZ, Adrian TE (2002) The mechanisms of lipoxygenase inhibitor-induced apoptosis in human breast cancer cells. Biochem Biophys Res Commun 296(4):942–948PubMedCrossRefGoogle Scholar
  42. 42.
    O’Flaherty JT, Wooten RE, Samuel MP, Thomas MJ, Levine EA, Case LD, Akman SA, Edwards IJ (2013) Fatty acid metabolites in rapidly proliferating breast cancer. PLoS One 8(5), e63076. doi: 10.1371/journal.pone.0063076 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Soberman RJ, Harper TW, Betteridge D, Lewis RA, Austen KF (1985) Characterization and separation of the arachidonic acid 5-lipoxygenase and linoleic acid omega-6 lipoxygenase (arachidonic acid 15-lipoxygenase) of human polymorphonuclear leukocytes. J Biol Chem 260(7):4508–4515PubMedGoogle Scholar
  44. 44.
    Reddy N, Everhart A, Eling T, Glasgow W (1997) Characterization of a 15-lipoxygenase in human breast carcinoma BT-20 cells: stimulation of 13-HODE formation by TGF alpha/EGF. Biochem Biophys Res Commun 231(1):111–116. doi: 10.1006/bbrc.1997.6048 PubMedCrossRefGoogle Scholar
  45. 45.
    Hammamieh R, Sumaida D, Zhang X, Das R, Jett M (2007) Control of the growth of human breast cancer cells in culture by manipulation of arachidonate metabolism. BMC Cancer 7:138. doi: 10.1186/1471-2407-7-138 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Rao CV (2007) Regulation of COX and LOX by curcumin. Adv Exp Med Biol 595:213–226. doi: 10.1007/978-0-387-46401-5_9 PubMedCrossRefGoogle Scholar
  47. 47.
    Neichi T, Koshihara Y, Murota S (1983) Inhibitory effect of esculetin on 5-lipoxygenase and leukotriene biosynthesis. Biochim Biophys Acta 753(1):130–132PubMedCrossRefGoogle Scholar
  48. 48.
    Kitagawa H, Noguchi M (1994) Comparative effects of piroxicam and esculetin on incidence, proliferation, and cell kinetics of mammary carcinomas induced by 7,12-dimethylbenz[a]anthracene in rats on high- and low-fat diets. Oncology 51(5):401–410PubMedCrossRefGoogle Scholar
  49. 49.
    Matsunaga K, Yoshimi N, Yamada Y, Shimizu M, Kawabata K, Ozawa Y, Hara A, Mori H (1998) Inhibitory effects of nabumetone, a cyclooxygenase-2 inhibitor, and esculetin, a lipoxygenase inhibitor, on N-methyl-N-nitrosourea-induced mammary carcinogenesis in rats. Jpn J Cancer Res 89(5):496–501PubMedCrossRefGoogle Scholar
  50. 50.
    Inano H, Onoda M, Inafuku N, Kubota M, Kamada Y, Osawa T, Kobayashi H, Wakabayashi K (1999) Chemoprevention by curcumin during the promotion stage of tumorigenesis of mammary gland in rats irradiated with gamma-rays. Carcinogenesis 20(6):1011–1018PubMedCrossRefGoogle Scholar
  51. 51.
    Inano H, Onoda M, Inafuku N, Kubota M, Kamada Y, Osawa T, Kobayashi H, Wakabayashi K (2000) Potent preventive action of curcumin on radiation-induced initiation of mammary tumorigenesis in rats. Carcinogenesis 21(10):1835–1841PubMedCrossRefGoogle Scholar
  52. 52.
    Reddy NP, Aparoy P, Reddy TC, Achari C, Sridhar PR, Reddanna P (2010) Design, synthesis, and biological evaluation of prenylated chalcones as 5-LOX inhibitors. Bioorg Med Chem 18(16):5807–5815. doi: 10.1016/j.bmc.2010.06.107 PubMedCrossRefGoogle Scholar
  53. 53.
    Singh AK, Singh R, Naz F, Chauhan SS, Dinda A, Shukla AA, Gill K, Kapoor V, Dey S (2012) Structure based design and synthesis of peptide inhibitor of human LOX-12: in vitro and in vivo analysis of a novel therapeutic agent for breast cancer. PLoS One 7(2), e32521. doi: 10.1371/journal.pone.0032521 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Armstrong B, Doll R (1975) Environmental factors and cancer incidence and mortality in different countries, with special reference to dietary practices. Int J Cancer 15(4):617–631PubMedCrossRefGoogle Scholar
  55. 55.
    Fleshner N, Bagnell PS, Klotz L, Venkateswaran V (2004) Dietary fat and prostate cancer. J Urol 171(2 Pt 2):S19–S24. doi: 10.1097/01.ju.0000107838.33623.19 PubMedCrossRefGoogle Scholar
  56. 56.
    Ghosh J, Myers CE (1997) Arachidonic acid stimulates prostate cancer cell growth: critical role of 5-lipoxygenase. Biochem Biophys Res Commun 235(2):418–423. doi: 10.1006/bbrc.1997.6799 PubMedCrossRefGoogle Scholar
  57. 57.
    Sarveswaran S, Thamilselvan V, Brodie C, Ghosh J (2011) Inhibition of 5-lipoxygenase triggers apoptosis in prostate cancer cells via down-regulation of protein kinase C-epsilon. Biochim Biophys Acta 1813(12):2108–2117. doi: 10.1016/j.bbamcr.2011.07.015 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Crawford ED, Eisenberger MA, McLeod DG, Spaulding JT, Benson R, Dorr FA, Blumenstein BA, Davis MA, Goodman PJ (1989) A controlled trial of leuprolide with and without flutamide in prostatic carcinoma. N Engl J Med 321(7):419–424. doi: 10.1056/nejm198908173210702 PubMedCrossRefGoogle Scholar
  59. 59.
    Gupta S, Srivastava M, Ahmad N, Sakamoto K, Bostwick DG, Mukhtar H (2001) Lipoxygenase-5 is overexpressed in prostate adenocarcinoma. Cancer 91(4):737–743PubMedCrossRefGoogle Scholar
  60. 60.
    Bishayee K, Khuda-Bukhsh AR (2013) 5-lipoxygenase antagonist therapy: a new approach towards targeted cancer chemotherapy. Acta Biochim Biophys Sin 45(9):709–719. doi: 10.1093/abbs/gmt064 PubMedCrossRefGoogle Scholar
  61. 61.
    Meng Z, Cao R, Yang Z, Liu T, Wang Y, Wang X (2013) Inhibitor of 5-lipoxygenase, zileuton, suppresses prostate cancer metastasis by upregulating E-cadherin and paxillin. Urology 82(6):1452. doi: 10.1016/j.urology.2013.08.060, e1457–1414PubMedCrossRefGoogle Scholar
  62. 62.
    Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A, Lochner D, Birchmeier W (1991) E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol 113(1):173–185PubMedCrossRefGoogle Scholar
  63. 63.
    Singhai R, Patil VW, Jaiswal SR, Patil SD, Tayade MB, Patil AV (2011) E-Cadherin as a diagnostic biomarker in breast cancer. N Am J Med Sci 3(5):227–233. doi: 10.4297/najms.2011.3227 PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Sen A, De Castro I, Defranco DB, Deng FM, Melamed J, Kapur P, Raj GV, Rossi R, Hammes SR (2012) Paxillin mediates extranuclear and intranuclear signaling in prostate cancer proliferation. J Clin Invest 122(7):2469–2481. doi: 10.1172/jci62044 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Sarveswaran S, Myers CE, Ghosh J (2010) MK591, a leukotriene biosynthesis inhibitor, induces apoptosis in prostate cancer cells: synergistic action with LY294002, an inhibitor of phosphatidylinositol 3′-kinase. Cancer Lett 291(2):167–176. doi: 10.1016/j.canlet.2009.10.008 PubMedCrossRefGoogle Scholar
  66. 66.
    Huang B, Cao K, Li X, Guo S, Mao X, Wang Z, Zhuang J, Pan J, Mo C, Chen J, Qiu S (2011) The expression and role of protein kinase C (PKC) epsilon in clear cell renal cell carcinoma. J Exp Clin Cancer Res 30:88. doi: 10.1186/1756-9966-30-88 PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, Forman D, Bray F (2013) Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer 49(6):1374–1403. doi: 10.1016/j.ejca.2012.12.027 PubMedCrossRefGoogle Scholar
  68. 68.
    Hussey HJ, Tisdale MJ (1996) Inhibition of tumour growth by lipoxygenase inhibitors. Br J Cancer 74:683–687PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Hussey HJ, Bibby MC, Tisdale MJ (1996) Novel anti-tumour activity of 2,3,5-trimethyl-6-(3-pyridylmethyl)-1,4- benzoquinone (CV-6504) against established murine adenocarcinomas (MAC). Br J Cancer 73:1187–1192PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Öhd JF, Nielsen CK, Campbell J, Landberg G, Löfberg H, Sjölander A (2003) Expression of the leukotriene D4 receptor CysLT1, COX-2, and other cell survival factors in colorectal adenocarcinomas. Gastroenterology 124:57–70. doi: 10.1053/gast.2003.50011 PubMedCrossRefGoogle Scholar
  71. 71.
    Soumaoro LT, Iida S, Uetake H, Ishiguro M, Takagi Y, Higuchi T, Yasuno M, Enomoto M, Sugihara K (2006) Expression of 5-lipoxygenase in human colorectal cancer. World J Gastroenterol 12:6355–6360PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Paruchuri S, Mezhybovska M, Juhas M, Sjölander A (2006) Endogenous production of leukotriene D4 mediates autocrine survival and proliferation via CysLT1 receptor signalling in intestinal epithelial cells. Oncogene 25:6660–6665. doi: 10.1038/sj.onc.1209666 PubMedCrossRefGoogle Scholar
  73. 73.
    Nielsen CK, Campbell JIA, Ohd JF, Mörgelin M, Riesbeck K, Landberg G, Sjölander A (2005) A novel localization of the G-protein-coupled CysLT1 receptor in the nucleus of colorectal adenocarcinoma cells. Cancer Res 65:732–742PubMedGoogle Scholar
  74. 74.
    Ihara A, Wada K, Yoneda M, Fujisawa N, Takahashi H, Nakajima A (2007) Blockade of leukotriene B4 signaling pathway induces apoptosis and suppresses cell proliferation in colon cancer. J Pharmacol Sci 103:24–32PubMedCrossRefGoogle Scholar
  75. 75.
    Melstrom LG, Bentrem DJ, Salabat MR, Kennedy TJ, Ding X-Z, Strouch M, Rao SM, Witt RC, Ternent CA, Talamonti MS, Bell RH, Adrian TA (2008) Overexpression of 5-lipoxygenase in colon polyps and cancer and the effect of 5-LOX inhibitors in vitro and in a murine model. Clin Cancer Res 14:6525–6530. doi: 10.1158/1078-0432.CCR-07-4631 PubMedCrossRefGoogle Scholar
  76. 76.
    Cheon EC, Khazaie K, Khan MW, Strouch MJ, Krantz SB, Phillips J, Blatner NR, Hix LM, Zhang M, Dennis KL, Salabat MR, Heiferman M, Grippo PJ, Munshi HG, Gounaris E, Bentrem DJ (2011) Mast cell 5-lipoxygenase activity promotes intestinal polyposis in APC 468 mice. Cancer Res 71:1627–1636. doi: 10.1158/0008-5472.CAN-10-1923 PubMedCrossRefGoogle Scholar
  77. 77.
    Cope GF, Wyatt JI, Pinder IF, Lee PN, Heatley RV, Kelleher J (1991) Alcohol consumption in patients with colorectal adenomatous polyps. Gut 32:70–72PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Ye Y-N, Liu ES-L, Shin VY, Wu WK-K, Cho C-H (2004) Contributory role of 5-lipoxygenase and its association with angiogenesis in the promotion of inflammation-associated colonic tumorigenesis by cigarette smoking. Toxicology 203:179–188. doi: 10.1016/j.tox.2004.06.004 PubMedCrossRefGoogle Scholar
  79. 79.
    Nishida N, Yano H, Nishida T, Kamura T, Kojiro M (2006) Angiogenesis in cancer. Vasc Health Risk Manag 2(3):213–219PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Ye YN, Wu WK, Shin VY, Bruce IC, Wong BC, Cho CH (2005) Dual inhibition of 5-LOX and COX-2 suppresses colon cancer formation promoted by cigarette smoke. Carcinogenesis 26(4):827–834. doi: 10.1093/carcin/bgi012 PubMedCrossRefGoogle Scholar
  81. 81.
    Arber N, Eagle CJ, Spicak J, Rácz I, Dite P, Hajer J, Zavoral M, Lechuga MJ, Gerletti P, Tang J, Rosenstein RB, Macdonald K, Bhadra P, Fowler R, Wittes J, Zauber AG, Solomon SD, Levin B, Investigators PT (2006) Celecoxib for the prevention of colorectal adenomatous polyps. N Engl J Med 355:885–895. doi: 10.1056/NEJMoa061652 PubMedCrossRefGoogle Scholar
  82. 82.
    Cimen I, Tuncay S, Banerjee S (2009) 15-Lipoxygenase-1 expression suppresses the invasive properties of colorectal carcinoma cell lines HCT-116 and HT-29. Cancer Sci 100(12):2283–2291. doi: 10.1111/j.1349-7006.2009.01313.x PubMedCrossRefGoogle Scholar
  83. 83.
    Zuo X, Peng Z, Wu Y, Moussalli MJ, Yang XL, Wang Y, Parker-Thornburg J, Morris JS, Broaddus RR, Fischer SM, Shureiqi I (2012) Effects of gut-targeted 15-LOX-1 transgene expression on colonic tumorigenesis in mice. J Natl Cancer Inst 104(9):709–716. doi: 10.1093/jnci/djs187 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Wu Y, Mao F, Zuo X, Moussalli MJ, Elias E, Xu W, Shureiqi I (2014) 15-LOX-1 suppression of hypoxia-induced metastatic phenotype and HIF-1alpha expression in human colon cancer cells. Cancer Med 3(3):472–484. doi: 10.1002/cam4.222 PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    de Carvalho DD, Sadok A, Bourgarel-Rey V, Gattacceca F, Penel C, Lehmann M, Kovacic H (2008) Nox1 downstream of 12-lipoxygenase controls cell proliferation but not cell spreading of colon cancer cells. Int J Cancer 122(8):1757–1764. doi: 10.1002/ijc.23300 PubMedCrossRefGoogle Scholar
  86. 86.
    Rao CV, Rivenson A, Simi B, Reddy BS (1995) Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound. Cancer Res 55:259–266PubMedGoogle Scholar
  87. 87.
    Hong J, Bose M, Ju J, Ryu J-H, Chen X, Sang S, Lee M-J, Yang CS (2004) Modulation of arachidonic acid metabolism by curcumin and related beta-diketone derivatives: effects on cytosolic phospholipase A(2), cyclooxygenases and 5-lipoxygenase. Carcinogenesis 25:1671–1679. doi: 10.1093/carcin/bgh165 PubMedCrossRefGoogle Scholar
  88. 88.
    Rao CV, Desai D, Rivenson A, Simi B, Amin S, Reddy BS (1995) Chemoprevention of colon carcinogenesis by phenylethyl-3-methylcaffeate. Cancer Res 55:2310–2315PubMedGoogle Scholar
  89. 89.
    Mohammed A, Janakiram NB, Li Q, Choi C-I, Zhang Y, Steele VE, Rao CV (2011) Chemoprevention of colon and small intestinal tumorigenesis in APCMin/+ mice by licofelone, a novel dual 5-LOX/COX inhibitor: potential implications for human colon cancer prevention. Cancer Prev Res 4:2015–2026. doi: 10.1158/1940-6207.CAPR-11-0233 CrossRefGoogle Scholar
  90. 90.
    Ghatak S, Vyas A, Misra S, O’Brien P, Zambre A, Fresco VM, Markwald RR, Swamy KV, Afrasiabi Z, Choudhury A, Khetmalas M, Padhye S (2014) Novel di-tertiary-butyl phenylhydrazones as dual cyclooxygenase-2/5-lipoxygenase inhibitors: synthesis, COX/LOX inhibition, molecular modeling, and insights into their cytotoxicities. Bioorg Med Chem Lett 24:317–324. doi: 10.1016/j.bmcl.2013.11.015 PubMedCrossRefGoogle Scholar
  91. 91.
    Misra S, Ghatak S, Patil N, Dandawate P, Ambike V, Adsule S, Unni D, Venkateswara Swamy K, Padhye S (2013) Novel dual cyclooxygenase and lipoxygenase inhibitors targeting hyaluronan–CD44v6 pathway and inducing cytotoxicity in colon cancer cells. Bioorg Med Chem 21:2551–2559. doi: 10.1016/j.bmc.2013.02.033 PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Tsukada T, Nakashima K, Shirakawa S (1986) Arachidonate 5-lipoxygenase inhibitors show potent antiproliferative effects on human leukemia cell lines. Biochem Biophys Res Commun 140(3):832–836PubMedCrossRefGoogle Scholar
  93. 93.
    Anderson KM, Seed T, Plate JM, Jajeh A, Meng J, Harris JE (1995) Selective inhibitors of 5-lipoxygenase reduce CML blast cell proliferation and induce limited differentiation and apoptosis. Leuk Res 19(11):789–801PubMedCrossRefGoogle Scholar
  94. 94.
    Gillis RC, Daley BJ, Enderson BL, Kestler DP, Karlstad MD (2007) Regulation of apoptosis in eicosapentaenoic acid-treated HL-60 cells. J Surg Res 137(1):141–150. doi: 10.1016/j.jss.2006.08.012 PubMedCrossRefGoogle Scholar
  95. 95.
    Feltenmark S, Runarsson G, Larsson P, Jakobsson PJ, Bjorkholm M, Claesson HE (1995) Diverse expression of cytosolic phospholipase A2, 5-lipoxygenase and prostaglandin H synthase 2 in acute pre-B-lymphocytic leukaemia cells. Br J Haematol 90(3):585–594PubMedCrossRefGoogle Scholar
  96. 96.
    Vincent C, Fiancette R, Donnard M, Bordessoule D, Turlure P, Trimoreau F, Denizot Y (2008) 5-LOX, 12-LOX and 15-LOX in immature forms of human leukemic blasts. Leuk Res 32(11):1756–1762. doi: 10.1016/j.leukres.2008.05.005 PubMedCrossRefGoogle Scholar
  97. 97.
    Graham SM, Vass JK, Holyoake TL, Graham GJ (2007) Transcriptional analysis of quiescent and proliferating CD34+ human hemopoietic cells from normal and chronic myeloid leukemia sources. Stem Cells 25(12):3111–3120. doi: 10.1634/stemcells.2007-0250 PubMedCrossRefGoogle Scholar
  98. 98.
    Radich JP, Dai H, Mao M, Oehler V, Schelter J, Druker B, Sawyers C, Shah N, Stock W, Willman CL, Friend S, Linsley PS (2006) Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci U S A 103(8):2794–2799. doi: 10.1073/pnas.0510423103 PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer JM, Beverloo HB, Moorhouse MJ, van der Spek PJ, Lowenberg B, Delwel R (2004) Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 350(16):1617–1628. doi: 10.1056/NEJMoa040465 PubMedCrossRefGoogle Scholar
  100. 100.
    Guriec N, Le Jossic-Corcos C, Simon B, Ianotto JC, Tempescul A, Dreano Y, Salaun JP, Berthou C, Corcos L (2014) The arachidonic acid-LTB4-BLT2 pathway enhances human B-CLL aggressiveness. Biochim Biophys Acta 1842(11):2096–2105. doi: 10.1016/j.bbadis.2014.07.016 PubMedCrossRefGoogle Scholar
  101. 101.
    Rosenwald A, Alizadeh AA, Widhopf G, Simon R, Davis RE, Yu X, Yang L, Pickeral OK, Rassenti LZ, Powell J, Botstein D, Byrd JC, Grever MR, Cheson BD, Chiorazzi N, Wilson WH, Kipps TJ, Brown PO, Staudt LM (2001) Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med 194(11):1639–1647PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Runarsson G, Liu A, Mahshid Y, Feltenmark S, Pettersson A, Klein E, Bjorkholm M, Claesson HE (2005) Leukotriene B4 plays a pivotal role in CD40-dependent activation of chronic B lymphocytic leukemia cells. Blood 105(3):1274–1279. doi: 10.1182/blood-2004-07-2546 PubMedCrossRefGoogle Scholar
  103. 103.
    Stratowa C, Loffler G, Lichter P, Stilgenbauer S, Haberl P, Schweifer N, Dohner H, Wilgenbus KK (2001) CDNA microarray gene expression analysis of B-cell chronic lymphocytic leukemia proposes potential new prognostic markers involved in lymphocyte trafficking. Int J Cancer 91(4):474–480PubMedCrossRefGoogle Scholar
  104. 104.
    Boyd RS, Jukes-Jones R, Walewska R, Brown D, Dyer MJ, Cain K (2009) Protein profiling of plasma membranes defines aberrant signaling pathways in mantle cell lymphoma. Mol Cell Proteomics 8(7):1501–1515. doi: 10.1074/mcp.M800515-MCP200 PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Mahshid Y, Lisy MR, Wang X, Spanbroek R, Flygare J, Christensson B, Bjorkholm M, Sander B, Habenicht AJ, Claesson HE (2009) High expression of 5-lipoxygenase in normal and malignant mantle zone B lymphocytes. BMC Immunol 10:2. doi: 10.1186/1471-2172-10-2 PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Runarsson G, Feltenmark S, Forsell PK, Sjoberg J, Bjorkholm M, Claesson HE (2007) The expression of cytosolic phospholipase A2 and biosynthesis of leukotriene B4 in acute myeloid leukemia cells. Eur J Haematol 79(6):468–476. doi: 10.1111/j.1600-0609.2007.00967.x, EJH967 [pii]PubMedCrossRefGoogle Scholar
  107. 107.
    Stenke L, Sjolinder M, Miale TD, Lindgren JA (1998) Novel enzymatic abnormalities in AML and CML in blast crisis: elevated leucocyte leukotriene C4 synthase activity paralleled by deficient leukotriene biosynthesis from endogenous substrate. Br J Haematol 101(4):728–736PubMedCrossRefGoogle Scholar
  108. 108.
    Steinhilber D, Fischer AS, Metzner J, Steinbrink SD, Roos J, Ruthardt M, Maier TJ (2010) 5-lipoxygenase: underappreciated role of a pro-inflammatory enzyme in tumorigenesis. Front Pharmacol 1:143. doi: 10.3389/fphar.2010.00143 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Chen Y, Hu Y, Zhang H, Peng C, Li S (2009) Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia. Nat Genet 41(7):783–792PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Lucas CM, Harris RJ, Giannoudis A, McDonald E, Clark RE (2014) Low leukotriene B4 receptor 1 (LTB4R1) leads to ALOX5 down-regulation at diagnosis of chronic myeloid leukemia. Haematologica. doi: 10.3324/haematol.2013.101972 PubMedCentralGoogle Scholar
  111. 111.
    DeKelver RC, Lewin B, Lam K, Komeno Y, Yan M, Rundle C, Lo MC, Zhang DE (2013) Cooperation between RUNX1-ETO9a and novel transcriptional partner KLF6 in upregulation of Alox5 in acute myeloid leukemia. PLoS Genet 9(10), e1003765. doi: 10.1371/journal.pgen.1003765 PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Lo MC, Peterson LF, Yan M, Cong X, Jin F, Shia WJ, Matsuura S, Ahn EY, Komeno Y, Ly M, Ommen HB, Chen IM, Hokland P, Willman CL, Ren B, Zhang DE (2012) Combined gene expression and DNA occupancy profiling identifies potential therapeutic targets of t(8;21) AML. Blood 120(7):1473–1484. doi: 10.1182/blood-2011-12-395335 PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Matsumoto N, Kubo A, Liu H, Akita K, Laub F, Ramirez F, Keller G, Friedman SL (2006) Developmental regulation of yolk sac hematopoiesis by Kruppel-like factor 6. Blood 107(4):1357–1365. doi: 10.1182/blood-2005-05-1916 PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Zhao JL, Austen KF, Lam BK (2000) Cell-specific transcription of leukotriene C(4) synthase involves a Kruppel-like transcription factor and Sp1. J Biol Chem 275(12):8903–8910PubMedCrossRefGoogle Scholar
  115. 115.
    Roos J, Oancea C, Heinssmann M, Khan D, Held H, Kahnt AS, Capelo R, la Buscato E, Proschak E, Puccetti E, Steinhilber D, Fleming I, Maier TJ, Ruthardt M (2014) 5-Lipoxygenase is a candidate target for therapeutic management of stem cell-like cells in acute myeloid leukemia. Cancer Res 74(18):5244–5255. doi: 10.1158/0008-5472.CAN-13-3012 PubMedCrossRefGoogle Scholar
  116. 116.
    Alison MR, Lin WR, Lim SM, Nicholson LJ (2012) Cancer stem cells: in the line of fire. Cancer Treat Rev 38(6):589–598. doi: 10.1016/j.ctrv.2012.03.003 PubMedCrossRefGoogle Scholar
  117. 117.
    Debeb BG, Lacerda L, Xu W, Larson R, Solley T, Atkinson R, Sulman EP, Ueno NT, Krishnamurthy S, Reuben JM, Buchholz TA, Woodward WA (2012) Histone deacetylase inhibitors stimulate dedifferentiation of human breast cancer cells through WNT/beta-catenin signaling. Stem Cells 30(11):2366–2377. doi: 10.1002/stem.1219 PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Roarty K, Rosen JM (2010) Wnt and mammary stem cells: hormones cannot fly wingless. Curr Opin Pharmacol 10(6):643–649. doi: 10.1016/j.coph.2010.07.004 PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Vermeulen L, De Sousa EMF, van der Heijden M, Cameron K, de Jong JH, Borovski T, Tuynman JB, Todaro M, Merz C, Rodermond H, Sprick MR, Kemper K, Richel DJ, Stassi G, Medema JP (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12(5):468–476. doi: 10.1038/ncb2048 PubMedCrossRefGoogle Scholar
  120. 120.
    Heidel FH, Bullinger L, Feng Z, Wang Z, Neff TA, Stein L, Kalaitzidis D, Lane SW, Armstrong SA (2012) Genetic and pharmacologic inhibition of beta-catenin targets imatinib-resistant leukemia stem cells in CML. Cell Stem Cell 10(4):412–424. doi: 10.1016/j.stem.2012.02.017 PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z, Zon LI, Armstrong SA (2010) The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 327(5973):1650–1653. doi: 10.1126/science.1186624 PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Zhao C, Blum J, Chen A, Kwon HY, Jung SH, Cook JM, Lagoo A, Reya T (2007) Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell 12(6):528–541. doi: 10.1016/j.ccr.2007.11.003 PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Chen Y, Peng C, Abraham SA, Shan Y, Guo Z, Desouza N, Cheloni G, Li D, Holyoake TL, Li S (2014) Arachidonate 15-lipoxygenase is required for chronic myeloid leukemia stem cell survival. J Clin Invest 124(9):3847–3862. doi: 10.1172/JCI66129 PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Ohgami RS, Ma L, Ren L, Weinberg OK, Seetharam M, Gotlib JR, Arber DA (2012) DNA methylation analysis of ALOX12 and GSTM1 in acute myeloid leukaemia identifies prognostically significant groups. Br J Haematol 159(2):182–190. doi: 10.1111/bjh.12029 PubMedCrossRefGoogle Scholar
  125. 125.
    Stenke L, Edenius C, Samuelsson J, Lindgren JA (1991) Deficient lipoxin synthesis: a novel platelet dysfunction in myeloproliferative disorders with special reference to blastic crisis of chronic myelogenous leukemia. Blood 78(11):2989–2995PubMedGoogle Scholar
  126. 126.
    Stenke L, Lauren L, Reizenstein P, Lindgren JA (1987) Leukotriene production by fresh human bone marrow cells: evidence of altered lipoxygenase activity in chronic myelocytic leukemia. Exp Hematol 15(2):203–207PubMedGoogle Scholar
  127. 127.
    Desplat V, Ivanovic Z, Dupuis F, Faucher JL, Denizot Y, Praloran V (2000) Effects of lipoxygenase metabolites of arachidonic acid on the growth of human blood CD34(+) progenitors. Blood Cells Mol Dis 26(5):427–436. doi: 10.1006/bcmd.2000.0321 PubMedCrossRefGoogle Scholar
  128. 128.
    Mahipal SV, Subhashini J, Reddy MC, Reddy MM, Anilkumar K, Roy KR, Reddy GV, Reddanna P (2007) Effect of 15-lipoxygenase metabolites, 15-(S)-HPETE and 15-(S)-HETE on chronic myelogenous leukemia cell line K-562: reactive oxygen species (ROS) mediate caspase-dependent apoptosis. Biochem Pharmacol 74(2):202–214. doi: 10.1016/j.bcp.2007.04.005 PubMedCrossRefGoogle Scholar
  129. 129.
    Middleton MK, Zukas AM, Rubinstein T, Jacob M, Zhu P, Zhao L, Blair I, Pure E (2006) Identification of 12/15-lipoxygenase as a suppressor of myeloproliferative disease. J Exp Med 203(11):2529–2540. doi: 10.1084/jem.20061444 PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Burchert A, Cai D, Hofbauer LC, Samuelsson MK, Slater EP, Duyster J, Ritter M, Hochhaus A, Muller R, Eilers M, Schmidt M, Neubauer A (2004) Interferon consensus sequence binding protein (ICSBP; IRF-8) antagonizes BCR/ABL and down-regulates bcl-2. Blood 103(9):3480–3489. doi: 10.1182/blood-2003-08-2970 PubMedCrossRefGoogle Scholar
  131. 131.
    Hao SX, Ren R (2000) Expression of interferon consensus sequence binding protein (ICSBP) is downregulated in Bcr-Abl-induced murine chronic myelogenous leukemia-like disease, and forced coexpression of ICSBP inhibits Bcr-Abl-induced myeloproliferative disorder. Mol Cell Biol 20(4):1149–1161PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Schmidt M, Nagel S, Proba J, Thiede C, Ritter M, Waring JF, Rosenbauer F, Huhn D, Wittig B, Horak I, Neubauer A (1998) Lack of interferon consensus sequence binding protein (ICSBP) transcripts in human myeloid leukemias. Blood 91(1):22–29PubMedGoogle Scholar
  133. 133.
    Pelletier SD, Hong DS, Hu Y, Liu Y, Li S (2004) Lack of the adhesion molecules P-selectin and intercellular adhesion molecule-1 accelerate the development of BCR/ABL-induced chronic myeloid leukemia-like myeloproliferative disease in mice. Blood 104(7):2163–2171. doi: 10.1182/blood-2003-09-3033 PubMedCrossRefGoogle Scholar
  134. 134.
    Sullivan C, Chen Y, Shan Y, Hu Y, Peng C, Zhang H, Kong L, Li S (2011) Functional ramifications for the loss of P-selectin expression on hematopoietic and leukemic stem cells. PLoS One 6(10), e26246. doi: 10.1371/journal.pone.0026246 PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Hu Y, Chen Y, Douglas L, Li S (2009) beta-Catenin is essential for survival of leukemic stem cells insensitive to kinase inhibition in mice with BCR-ABL-induced chronic myeloid leukemia. Leukemia 23(1):109–116. doi: 10.1038/leu.2008.262 PubMedCrossRefGoogle Scholar
  136. 136.
    Peng C, Chen Y, Yang Z, Zhang H, Osterby L, Rosmarin AG, Li S (2010) PTEN is a tumor suppressor in CML stem cells and BCR-ABL-induced leukemias in mice. Blood 115(3):626–635. doi: 10.1182/blood-2009-06-228130 PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Fischer AS, Metzner J, Steinbrink SD, Ulrich S, Angioni C, Geisslinger G, Steinhilber D, Maier TJ (2010) 5-Lipoxygenase inhibitors induce potent anti-proliferative and cytotoxic effects in human tumour cells independently of suppression of 5-lipoxygenase activity. Br J Pharmacol 161(4):936–949. doi: 10.1111/j.1476-5381.2010.00915.x PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Datta K, Biswal SS, Kehrer JP (1999) The 5-lipoxygenase-activating protein (FLAP) inhibitor, MK886, induces apoptosis independently of FLAP. Biochem J 340(Pt 2):371–375PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Sabirsh A, Bristulf J, Karlsson U, Owman C, Haeggstrom JZ (2005) Non-specific effects of leukotriene synthesis inhibitors on HeLa cell physiology. Prostaglandins Leukot Essent Fatty Acids 73(6):431–440. doi: 10.1016/j.plefa.2005.08.004 PubMedCrossRefGoogle Scholar
  140. 140.
    Tavolari S, Bonafe M, Marini M, Ferreri C, Bartolini G, Brighenti E, Manara S, Tomasi V, Laufer S, Guarnieri T (2008) Licofelone, a dual COX/5-LOX inhibitor, induces apoptosis in HCA-7 colon cancer cells through the mitochondrial pathway independently from its ability to affect the arachidonic acid cascade. Carcinogenesis 29(2):371–380. doi: 10.1093/carcin/bgm265, bgm265 [pii]PubMedCrossRefGoogle Scholar
  141. 141.
    Hoque A, Lippman SM, Wu TT, Xu Y, Liang ZD, Swisher S, Zhang H, Cao L, Ajani JA, Xu XC (2005) Increased 5-lipoxygenase expression and induction of apoptosis by its inhibitors in esophageal cancer: a potential target for prevention. Carcinogenesis 26(4):785–791PubMedCrossRefGoogle Scholar
  142. 142.
    Schwartz GK, Weitzman A, O’Reilly E, Brail L, de Alwis DP, Cleverly A, Barile-Thiem B, Vinciguerra V, Budman DR (2005) Phase I and pharmacokinetic study of LY293111, an orally bioavailable LTB4 receptor antagonist, in patients with advanced solid tumors. J Clin Oncol 23(23):5365–5373. doi: 10.1200/JCO.2005.02.766, JCO.2005.02.766 [pii]PubMedCrossRefGoogle Scholar
  143. 143.
    Marder P, Sawyer JS, Froelich LL, Mann LL, Spaethe SM (1995) Blockade of human neutrophil activation by 2-[2-propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5- hydroxyphenoxy]propoxy]phenoxy]benzoic acid (LY293111), a novel leukotriene B4 receptor antagonist. Biochem Pharmacol 49(11):1683–1690, 0006-2952(95)00078-E [pii]PubMedCrossRefGoogle Scholar
  144. 144.
    Adrian TE, Hennig R, Friess H, Ding X (2008) The role of PPARgamma receptors and LEUKOTRIENE B(4) receptors in mediating the effects of LY293111 in pancreatic cancer. PPAR Res 2008:827096. doi: 10.1155/2008/827096 PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Lepley RA, Fitzpatrick FA (1994) 5-Lipoxygenase contains a functional Src homology 3-binding motif that interacts with the Src homology 3 domain of Grb2 and cytoskeletal proteins. J Biol Chem 269(39):24163–24168PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • J. Roos
    • 1
    Email author
  • B. Kühn
    • 1
  • J. Fettel
    • 1
  • I. V. Maucher
    • 1
  • M. Ruthardt
    • 2
  • A. Kahnt
    • 1
  • T. Vorup-Jensen
    • 3
  • C. Matrone
    • 3
  • D. Steinhilber
    • 1
  • T. J. Maier
    • 3
    Email author
  1. 1.Institute of Pharmaceutical Chemistry/ZAFESGoethe-UniversityFrankfurt/MainGermany
  2. 2.Department of HematologyGoethe UniversityFrankfurtGermany
  3. 3.Department of BiomedicineAarhus UniversityAarhus CDenmark

Personalised recommendations