Advertisement

Micro-neuroanatomy of the Vagus, Superior Laryngeal, and Recurrent Laryngeal Nerves

  • Noah P. ParkerEmail author
  • Rita Patel
  • Stacey L. Halum
Chapter

Abstract

The micro-neuroanatomy of the vagus nerve (VN), superior laryngeal nerve (SLN), recurrent laryngeal nerve (RLN), and their respective central connections are complex. While there has been some clarity amongst animal and human studies, there is considerable debate regarding central contributions and topography, as well as peripheral fiber types, topographical organization, and function. This chapter will discuss the micro-neuroanatomy of the central connections, neural ganglia, and each nerve separately. Meanwhile, because the micro-neuroanatomy provides information regarding the form underlying the function of the larynx, further consideration of laryngeal dysfunction is addressed through additional sections covering age-related changes, neural injury, and neural regeneration.

Keywords

Micro-neuroanatomy Topography Morphometric Myelin Nucleus ambiguus Vagus nerve Superior laryngeal nerve Recurrent laryngeal nerve Neural injury Neural regeneration Reinnervation 

References

  1. 1.
    Kalia M, Mesulam MM. Brain stem projections of sensory and motor components of the vagus complex in the cat: II. Laryngeal, tracheobronchial, pulmonary, cardiac, and gastrointestinal branches. J Comp Neurol. 1980;193:467–508.CrossRefPubMedGoogle Scholar
  2. 2.
    Yoshida Y, Miyazaki T, Hirano M, et al. Arrangement of motoneurons innervating the intrinsic laryngeal muscles of cats as demonstrated by horseradish peroxidase. Acta Otolaryngol. 1982;94:329–34.CrossRefPubMedGoogle Scholar
  3. 3.
    Yoshida Y, Yatake K, Tanaka Y, et al. Morphological observation of laryngeal motoneurons by means of cholera toxin B subunit tracing technique. Acta Otolaryngol. 1998;539:98–105.CrossRefGoogle Scholar
  4. 4.
    Fix JD. Cranial nerves. In: Fix JD, editor. Neuroanatomy. 3rd ed. Philadelphia, PA: Lippincott, Williams, & Wilkens; 2002.Google Scholar
  5. 5.
    Yoshida Y, Saito T, Tanaka Y, et al. The Postganglionic sympathetic innervation of the larynx in cats. In: Gauffin J, Hammerberg B, editors. Vocal Physiology, Acoustic, perceptual, and physiological aspects of voice mechanisms. Singular Publishing Inc: San Diego; 1991. p. 189–96.Google Scholar
  6. 6.
    Mesulam M. Tetramethyl benzidine for horseradish peroxidase neurohistochemistry, a non-carcinogenic blue reaction-product with superior sensitivity for visualizing neural afferents and efferent. J Histochem Cytochem. 1978;26:106–17.CrossRefPubMedGoogle Scholar
  7. 7.
    Myssiorek D. Reucrrent laryngeal nerve paralysis: anatomy and etiology. Otolaryngol Clin Noth Am. 2004;37:25–44.CrossRefGoogle Scholar
  8. 8.
    Gacek RR, Malmgren LT, Lyon MJ. Location of adductor and abductor motor fibers to the larynx. Ann Otol Rhinol Laryngol. 1977;86:770–6.CrossRefGoogle Scholar
  9. 9.
    Mei N, Condamin M, Boyer A. The composition of the vagus nerve of the cat. Cell Tissue Res. 1980;209:423–31.CrossRefPubMedGoogle Scholar
  10. 10.
    Evans DHL, Murray JG. Histological and functional studies on the fibre composition of the vagus nerve of the rabbit. J Anat. 1954;88:320–37.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Ogura JH, Lam RL. Anatomical and physiological correlations on stimulating the human superior laryngeal nerve. Laryngoscope. 1953;63:947–59.CrossRefPubMedGoogle Scholar
  12. 12.
    Kierner AC, Aigner M, Burium M. The external branch of the superior laryngeal nerve. Arch Otolaryngol Head Neck Surg. 1998;124:301–3.CrossRefPubMedGoogle Scholar
  13. 13.
    Kambic V, Zargi M, Radsel Z. Topographical anatomy of the external branch of the superior laryngeal nerve. J Laryngol Otol. 1984;98:1121–4.CrossRefPubMedGoogle Scholar
  14. 14.
    Stephens RE, Wendel KH, Addington WR. Anatomy of the internal branch of the superior laryngeal nerve. Clin Anat. 1999;12:79–83.CrossRefPubMedGoogle Scholar
  15. 15.
    Tiago R, Pontes P, do Brasil OC. Age-related changes in human laryngeal nerves. Otolaryngol Head Neck Surg. 2007;136:747–51.CrossRefPubMedGoogle Scholar
  16. 16.
    Andrew BL. A functional analysis of the myelinated fibres of the superior laryngeal nerve of the rat. J Physiol. 1956;153:420–32.CrossRefGoogle Scholar
  17. 17.
    Kirchner JA, Wyke BD. Afferent discharges from laryngeal articular mechanoreceptors. Nature. 1965;205:86–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Sant’Ambrogio G, Mathew OP, Fisher JT, Sant’Ambrogio FB. Laryngeal receptors responding to transmural pressure, airflow, and local muscle activity. Respir Physiol. 1983;54:317–30.CrossRefPubMedGoogle Scholar
  19. 19.
    Shin T, Wada S, Maeyama T, et al. Substance P immunoreactive sensory nerve fibers of the canine laryngeal mucosa. In: Fumimora O, editor. Vocal physiology: voice production mechanisms and functions. New York: Raven Press Ltd; 1988. p. 115–27.Google Scholar
  20. 20.
    Hamamoto T, Takumida M, Hirakawa K, Takeno S, Tatsukawa T. Localization of transient receptor potential channel vanilloid subfamilies in the mouse larynx. Acta Otolaryngol. 2008;128:685–93.CrossRefPubMedGoogle Scholar
  21. 21.
    Lee LY, Gu Q. Role of TRPV1 in inflammation-induced airway hypersensitivity. Curr Opin Pharmacol. 2009;9:243–9.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Nadel J, Widdcombe J. Reflex effects of upper airway irritation on total lung resistance and blood pressure. J Appl Physiol. 1962;17:861–5.PubMedGoogle Scholar
  23. 23.
    Zhang G, et al. Altered expression of trpv1 and sensitivity to capsaicin in pulmonary myelinated afferents following chronic airway inflammation in the rat. J Physiol. 2008;23:5771–86.CrossRefGoogle Scholar
  24. 24.
    Björck G, Margolin G, Måbäck GM, et al. New animal model for assessment of functional laryngeal motor innervation. Ann Otol Rhinol Laryngol. 2012;121(10):695–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Wu B, Sanders I, Mu L, et al. The human communicating nerve. Arch Otolaryngol Head Neck Surg. 1994;120:1321–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Shin T, Rabuzzi D. Conduction studies of the canine recurrent laryngeal nerve. Laryngoscope. 1971;81:586–96.CrossRefPubMedGoogle Scholar
  27. 27.
    Tomasch J, Britton WA. A fiber-analysis of the recurrent laryngeal nerve supply in man. Acta Anat. 1955;23:386–98.CrossRefPubMedGoogle Scholar
  28. 28.
    Jotz GP, de Campos D, Rodrigues MF, et al. Histological asymmetry of the human recurrent laryngeal nerve. J Voice. 2005;25:8–14.CrossRefGoogle Scholar
  29. 29.
    Harrison DFN. Fiber size frequency in the recurrent laryngeal nerves of man and giraffe. Acta Otolaryngol. 1981;91:383–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Dahlqvist A, Carlsoo B, Hellstrom S. Fiber components of the recurrent laryngeal nerve of the rat: a study by light and electron microscopy. Anat Rec. 1982;204:365–70.CrossRefPubMedGoogle Scholar
  31. 31.
    De Campos D, Ellwanger JH, do Nascimento PS, et al. Sexual dimorphism in the human vocal fold innervation. J Voice. 2013;27:267–72.CrossRefPubMedGoogle Scholar
  32. 32.
    Sunderland S, Swaney WE. The intraneural topography of the recurrent laryngeal nerve in man. Anat Rec. 1952;114:411–26.CrossRefPubMedGoogle Scholar
  33. 33.
    Dubois FS, Foley JO. Experimental studies on the vagus and spinal accessory nerves in the cat. Anat Rec. 1936;64:285–307.CrossRefGoogle Scholar
  34. 34.
    Brocklehurst RJ, Edgeworth FH. The fibers components of the laryngeal nerves of the Macaca mulatta. J Anat. 1940;74:386–9.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Malmgren LT, Gacek RR. Acetylcholinesterase staining of the fiber components in feline and human recurrent laryngeal nerve. Topography of laryngeal motor fiber regions. Acta Otolaryngol. 1981;91:337–52.CrossRefPubMedGoogle Scholar
  36. 36.
    Rosenberg SI, Malmgren LT, Woo P. Age-related changes in the internal branch of the rat superior laryngeal nerve. Arch Otolaryngol Head Neck Surg. 1989;115:78–86.CrossRefPubMedGoogle Scholar
  37. 37.
    Mortelliti AJ, Malmgren LT, Gacek RR. Ultrastructural changes with age in the human superior laryngeal nerve. Arch Otolaryngol Head Neck Surg. 1990;116:1062–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Malmgren LT, Ringwood MA. Aging of the recurrent laryngeal nerve: an ultrastuctural morphometric study. In: Fumimora O, editor. Vocal physiology: voice production mechanisms and functions. New York: Raven Press Ltd; 1988. p. 159–80.Google Scholar
  39. 39.
    Nakai T, Gogo N, Moriyama H, et al. The human recurrent laryngeal nerve during the aging process. Okajimas Folia Anat Jpn. 2000;76:363–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Mueller PB, Sweeney RJ, Baribeau LJ. Acoustic and morphologic study of senescent voice. Ear Nose Throat J. 1984;63:292–5.PubMedGoogle Scholar
  41. 41.
    Kirchner JA. Laryngeal afferent systems in phonatory control. Proc Conf Access Vocal Pathol. 1981;11:31.Google Scholar
  42. 42.
    Paniello RC, Edgar JC, Kallogjeri D, et al. Medialization versus reinnervation for unilateral vocal fold paralysis: a multicenter randomized clinical trial. Laryngoscope. 2011;121:2172–9.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Seddon HJ. Three types of nerve injury. Brain. 1943;66(4):237–88.CrossRefGoogle Scholar
  44. 44.
    Sunderland S. A classification of peripheral nerve injuries producing loss of function. Brain. 1951;74:491–516.CrossRefPubMedGoogle Scholar
  45. 45.
    George EB, Glass JD, Griffin JW. Axotomy-induced axonal degeneration is mediated by calcium influx through ion-specific channels. J Neurosci. 1995;15:6445–52.PubMedGoogle Scholar
  46. 46.
    Perry VH, Brown MC, Gordon S. The macrophage response to central and peripheral nerve injury. A possible role for macrophages in regeneration. J Exp Med. 1987;165:1218–23.CrossRefPubMedGoogle Scholar
  47. 47.
    Tang S, Shen YJ, DeBellard ME. Myelin-associated glycoprotein interacts with neurons via a sialic acid binding site at ARG118 and a distinct neurite inhibition site. J Cell Biol. 1997;38:1355–66.CrossRefGoogle Scholar
  48. 48.
    Love FM, Son YJ, Thompson WJ. Activity alters muscle reinnervation and terminal sprouting by reducing the number of Schwann cell pathways that grow to link synaptic sites. J Neurobiol. 2003;54(4):566–76.CrossRefPubMedGoogle Scholar
  49. 49.
    Kingham PJ, Terenghi G. Bioengineered nerve regeneration and muscle reinnervation. J Anat. 2006;209(4):511–26.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Nomoto M, Yoshihara T, Kanda T, Kaneko T. Synapse formation by autonomic nerves in the previously denervated neuromuscular junctions of the feline intrinsic laryngeal muscles. Brain Res. 1991;539(2):276–86.CrossRefPubMedGoogle Scholar
  51. 51.
    Nomoto M, Yoshihara T, Kanda T, Konno A, Kaneko T. Misdirected reinnervation in the feline intrinsic laryngeal muscles after long-term denervation. Acta Otolaryngol Suppl. 1993;506:71–4.CrossRefPubMedGoogle Scholar
  52. 52.
    Hydman J, Mattsson P. Collateral reinnervation by the superior laryngeal nerve after recurrent laryngeal nerve injury. Muscle Nerve. 2008;38(4):1280–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Halum SL, Macrae B, Bijangi-Vishehsaraei K, et al. Neurotrophic factor-secreting autologous muscle stem cell therapy for the treatment of laryngeal denervation injury. Laryngoscope. 2012;122:2482–96.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Departments of Otolaryngology—Head and Neck Surgery and Speech and Hearing SciencesIndiana University, The Voice Clinic of IndianaCarmelUSA
  2. 2.Department of Speech and Hearing SciencesIndiana UniversityBloomingtonUSA
  3. 3.Department of Speech, Language, and Hearing SciencesPurdue University, The Voice Clinic of IndianaCarmelUSA

Personalised recommendations