Advertisement

Intraoperative Neural Injury Management: Neuropraxic Non-transection Injury

  • Gianlorenzo DionigiEmail author
  • Gregory W. Randolph
  • Per Mattsson
Chapter

Abstract

During thyroid surgery, the macroscopically intact recurrent laryngeal nerve (RLN) may cease to function, even though it is not transected. Traction, cautery, pressure, crush, or being tied in surrounding tissue are some causes of impaired function during surgery. Invisible RLN injuries (such as thermal, traction, compression, contusion, or pressure) are not detected by the surgeon’s eye; only a functional assessment of the RLN with intraoperative nerve monitoring (IONM) can detect such insults. With the application of IONM, we appreciate that traction is the major cause of RLN injury during thyroid surgery.

Keywords

Recurrent laryngeal nerve Superior laryngeal nerve Mechanism of injury Neurobiology Neurophysiology Management Intraoperative corticosteroids Neuromonitoring 

Supplementary material

Video 20.1

RLN segmental type 1 injury due to traction. Nerve injury is neither appreciated by surgeon eye nor by high definition endoscopy magnification. By means of IONM, the surgeon identifies the site of injury: the RLN loses stimulation proximal to the point of traction injury and retains nerve stimulation distal to the point of traction injury. Subsequent VN stimulation is negative (AVI 37675 kb)

References

  1. 1.
    Gacek RR, Lyon MJ. Fiber components of the recurrent laryngeal nerve in the cat. Ann Otol Rhinol Laryngol. 1976;85:460–71.CrossRefPubMedGoogle Scholar
  2. 2.
    Berkowitz RG, Sun QJ, Chalmers J, Pilowsky P. Identification of posterior cricoarytenoid motoneurons in the rat. Ann Otol Rhinol Laryngol. 1999;108:1033–41.CrossRefPubMedGoogle Scholar
  3. 3.
    Bieger D, Hopkins DA. Viscerotopic representation of the upper alimentary tract in the medulla oblongata in the rat: the nucleus ambiguus. J Comp Neurol. 1987;262:546–62.CrossRefPubMedGoogle Scholar
  4. 4.
    Gacek RR. Localization of laryngeal motor neurons in the kitten. Laryngoscope. 1975;85:1841–61.CrossRefPubMedGoogle Scholar
  5. 5.
    Gacek RR, Malmgren LT. Laryngeal motor innervation-central. In: Blitzer A, editor. Neurologic disorders of the larynx. New York: Thieme; 1992. p. 29–35.Google Scholar
  6. 6.
    Hinrichsen CF, Ryan AT. Localization of laryngeal motoneurons in the rat: morphologic evidence for dual innervation? Exp Neurol. 1981;74:341–55.CrossRefPubMedGoogle Scholar
  7. 7.
    Kobler JB, Datta S, Goyal RK, Benecchi EJ. Innervation of the larynx, pharynx, and upper esophageal sphincter of the rat. J Comp Neurol. 1994;349:129–47.CrossRefPubMedGoogle Scholar
  8. 8.
    Lobera B, Pasaro R, Gonzalez-Baron S, Delgado-Garcia JM. A morphological study of ambiguus nucleus motoneurons innervating the laryngeal muscles in the rat and cat. Neurosci Lett. 1981;23:125–30.CrossRefPubMedGoogle Scholar
  9. 9.
    Patrickson JW, Smith TE, Zhou SS. Motor neurons of the laryngeal nerves. Anat Rec. 1991;230:551–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Portillo F, Pasaro R. Location of motoneurons supplying the intrinsic laryngeal muscles of rats. Horseradish peroxidase and fluorescence double-labeling study. Brain Behav Evol. 1988;32:220–5.CrossRefPubMedGoogle Scholar
  11. 11.
    Fontenot TE, Randolph GW, Friedlander PL, Masoodi H, Yola IM, Kandil E. Gender, race, and electrophysiologic characteristics of the branched recurrent laryngeal nerve. Laryngoscope. 2014;124:2433–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Sandillon H. Le role de l’anse de Galien Unités dEnseignement et de Recherche des Siences Médicales. Bordeaux: Université de Bordeaux II; 1984.Google Scholar
  13. 13.
    Kandil E, Abdelghani S, Friedlander P, et al. Motor and sensory branching of the recurrent laryngeal nerve in thyroid surgery. Surgery. 2011;150:1222–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Serpell JW, Yeung MJ, Grodski S. The motor fibers of the recurrent laryngeal nerve are located in the anterior extralaryngeal branch. Ann Surg. 2009;249:648–52.CrossRefPubMedGoogle Scholar
  15. 15.
    Maranillo E, Leon X, Ibanez M, Orus C, Quer M, Sanudo JR. Variability of the nerve supply patterns of the human posterior cricoarytenoid muscle. Laryngoscope. 2003;113:602–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Maranillo E, Leon X, Orus C, Quer M, Sanudo JR. Variability in nerve patterns of the adductor muscle group supplied by the recurrent laryngeal nerve. Laryngoscope. 2005;115:358–62.CrossRefPubMedGoogle Scholar
  17. 17.
    Sanudo JR, Maranillo E, Leon X, Mirapeix RM, Orus C, Quer M. An anatomical study of anastomoses between the laryngeal nerves. Laryngoscope. 1999;109:983–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Dilworth TF. The nerves of the human larynx. J Anat. 1921;56:48–52.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Bjorck G, Margolin G, Maback GM, Persson JK, Mattsson P, Hydman J. New animal model for assessment of functional laryngeal motor innervation. Ann Otol Rhinol Laryngol. 2012;121:695–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Hydman J, Mattsson P. Collateral reinnervation by the superior laryngeal nerve after recurrent laryngeal nerve injury. Muscle Nerve. 2008;38:1280–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Monfared A, Kim D, Jaikumar S, Gorti G, Kam A. Microsurgical anatomy of the superior and recurrent laryngeal nerves. Neurosurgery. 2001;49:925–32; discussion 932–3.PubMedGoogle Scholar
  22. 22.
    Shaw GY, Searl JP, Hoover LA. Diagnosis and treatment of unilateral cricothyroid muscle paralysis with a modified Isshiki type 4 thyroplasty. Otolaryngol Head Neck Surg. 1995;113:679–88.CrossRefPubMedGoogle Scholar
  23. 23.
    Wu BL, Sanders I, Mu L, Biller HF. The human communicating nerve. An extension of the external superior laryngeal nerve that innervates the vocal cord. Arch Otolaryngol Head Neck Surg. 1994;120:1321–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Maranillo E, Leon X, Quer M, Orus C, Sanudo JR. Is the external laryngeal nerve an exclusively motor nerve? The cricothyroid connection branch. Laryngoscope. 2003;113:525–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Barczynski M, Randolph GW, Cernea CR, et al. External branch of the superior laryngeal nerve monitoring during thyroid and parathyroid surgery: International Neural Monitoring Study Group standards guideline statement. Laryngoscope. 2013;123 Suppl 4:S1–14.CrossRefPubMedGoogle Scholar
  26. 26.
    Orestes MI, Chhetri DK. Superior laryngeal nerve injury: effects, clinical findings, prognosis, and management options. Curr Opin Otolaryngol Head Neck Surg. 2014;22:439–43.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kimura J. Electrodiagnosis in diseases of nerve and muscle: principles and practices. Oxford: Oxford University Press; 2001.Google Scholar
  28. 28.
    Hydman J, Bjorck G, Persson JK, Zedenius J, Mattsson P. Diagnosis and prognosis of iatrogenic injury of the recurrent laryngeal nerve. Ann Otol Rhinol Laryngol. 2009;118:506–11.CrossRefPubMedGoogle Scholar
  29. 29.
    Schwab ME. Nogo and axon regeneration. Curr Opin Neurobiol. 2004;14:118–24.CrossRefPubMedGoogle Scholar
  30. 30.
    DeFrancesco-Lisowitz A, Lindborg JA, Niemi JP, Zigmond RE. The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience. 2014;302:174–203.CrossRefPubMedGoogle Scholar
  31. 31.
    Fawcett JW, Keynes RJ. Peripheral nerve regeneration. Annu Rev Neurosci. 1990;13:43–60.CrossRefPubMedGoogle Scholar
  32. 32.
    Ide C. Peripheral nerve regeneration. Neurosci Res. 1996;25:101–21.CrossRefPubMedGoogle Scholar
  33. 33.
    Richner M, Ulrichsen M, Elmegaard SL, Dieu R, Pallesen LT, Vaegter CB. Peripheral nerve injury modulates neurotrophin signaling in the peripheral and central nervous system. Mol Neurobiol. 2014;50:945–70.CrossRefPubMedGoogle Scholar
  34. 34.
    Scheib J, Hoke A. Advances in peripheral nerve regeneration. Nat Rev Neurol. 2013;9:668–76.CrossRefPubMedGoogle Scholar
  35. 35.
    Cajal YR. Degeneration and regeneration of the nervous system. Oxford: Oxford University Press; 1928.Google Scholar
  36. 36.
    Waller A. Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibers. Philos Trans R Soc Lond (Biol). 1850;140:423–9.CrossRefGoogle Scholar
  37. 37.
    Fournier AE, Strittmatter SM. Regenerating nerves follow the road more traveled. Nat Neurosci. 2002;5:821–2.CrossRefPubMedGoogle Scholar
  38. 38.
    Nguyen QT, Sanes JR, Lichtman JW. Pre-existing pathways promote precise projection patterns. Nat Neurosci. 2002;5:861–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Aldskogius H, Svensson M. Neuronal and glial cell responses to axon injury. Adv Struct Biol. 1993;2:191–223.Google Scholar
  40. 40.
    Svensson M, Aldskogius H. The effect of axon injury on microtubule-associated proteins MAP2, 3 and 5 in the hypoglossal nucleus of the adult rat. J Neurocytol. 1992;21:222–31.CrossRefPubMedGoogle Scholar
  41. 41.
    Svensson M, Eriksson P, Persson JK, Molander C, Arvidsson J, Aldskogius H. The response of central glia to peripheral nerve injury. Brain Res Bull. 1993;30:499–506.CrossRefPubMedGoogle Scholar
  42. 42.
    Oppenheim RW, Houenou LJ, Johnson JE, et al. Developing motor neurons rescued from programmed and axotomy-induced cell death by GDNF [see comments]. Nature. 1995;373:344–6.CrossRefPubMedGoogle Scholar
  43. 43.
    Oppenheim RW, Yin QW, Prevette D, Yan Q. Brain-derived neurotrophic factor rescues developing avian motoneurons from cell death. Nature. 1992;360:755–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Sendtner M, Holtmann B, Kolbeck R, Thoenen H, Barde YA. Brain-derived neurotrophic factor prevents the death of motoneurons in newborn rats after nerve section. Nature. 1992;360:757–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Sendtner M, Kreutzberg GW, Thoenen H. Ciliary neurotrophic factor prevents the degeneration of motor neurons after axotomy. Nature. 1990;345:440–1.CrossRefPubMedGoogle Scholar
  46. 46.
    Hydman J, Svensson M, Kuylenstierna R, Ohlsson M, Mattsson P. Neuronal survival and glial reactions after recurrent laryngeal nerve resection in the rat. Laryngoscope. 2005;115:619–24.CrossRefPubMedGoogle Scholar
  47. 47.
    Blinzinger K, Kreutzberg G. Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Z Zellforsch Mikrosk Anat. 1968;85:145–57.CrossRefPubMedGoogle Scholar
  48. 48.
    Snyder SK, Lairmore TC, Hendricks JC, Roberts JW. Elucidating mechanisms of recurrent laryngeal nerve injury during thyroidectomy and parathyroidectomy. J Am Coll Surg. 2008;206(1):123–30.CrossRefPubMedGoogle Scholar
  49. 49.
    Chiang FY, Lu IC, Kuo WR, Lee KW, Chang NC, Wu CW. The mechanism of recurrent laryngeal nerve injury during thyroid surgery—the application of intraoperative neuromonitoring. Surgery. 2008;143(6):743–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Dionigi G, Alesina PF, Barczynski M, et al. Recurrent laryngeal nerve injury in video-assisted thyroidectomy: lessons learned from neuromonitoring. Surg Endosc. 2012;26:2601–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Dionigi G, Boni L, Rovera F, Rausei S, Castelnuovo P, Dionigi R. Postoperative laryngoscopy in thyroid surgery: proper timing to detect recurrent laryngeal nerve injury. Langenbecks Arch Surg. 2010;395(4):327–31.CrossRefPubMedGoogle Scholar
  52. 52.
    Bergenfelz A, Jansson S, Kristoffersson A, Mårtensson H, Reihnér E, Wallin G, Lausen I. Complications to thyroid surgery: results as reported in a database from a multicenter audit comprising 3,660 patients. Langenbecks Arch Surg. 2008;393(5):667–73.CrossRefPubMedGoogle Scholar
  53. 53.
    Reeve T, Thompson NW. Complications of thyroid surgery: how to avoid them, how to manage them, and observations on their possible effect on the whole patient. World J Surg. 2000;24:971–5.CrossRefPubMedGoogle Scholar
  54. 54.
    Jiang H, Shen H, Jiang D, Zheng X, Zhang W, Lu L, Jiang Z, Qiu M. Evaluating the safety of the Harmonic Scalpel around the recurrent laryngeal nerve. ANZ J Surg. 2010;80(11):822–6.CrossRefPubMedGoogle Scholar
  55. 55.
    Genther DJ, Kandil EH, Noureldine SI, Tufano RP. Correlation of final evoked potential amplitudes on intraoperative electromyography of the recurrent laryngeal nerve with immediate postoperative vocal fold function after thyroid and parathyroid surgery. JAMA Otolaryngol Head Neck Surg. 2014;140(2):124–8.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Faaborg-Andersen K, Buchthal F. Action potentials from internal laryngeal muscles during phonation. Nature. 1956;177:340–1.CrossRefPubMedGoogle Scholar
  57. 57.
    Blitzer A, Crumley RL, Dailey SH, et al. Recommendations of the Neurolaryngology Study Group on laryngeal electromyography. Otolaryngol Head Neck Surg. 2009;140:782–93.CrossRefPubMedGoogle Scholar
  58. 58.
    Rickert SM, Childs LF, Carey BT, Murry T, Sulica L. Laryngeal electromyography for prognosis of vocal fold palsy: a meta-analysis. Laryngoscope. 2012;122:158–61.CrossRefPubMedGoogle Scholar
  59. 59.
    Smith LJ, Rosen CA, Niyonkuru C, Munin MC. Quantitative electromyography improves prediction in vocal fold paralysis. Laryngoscope. 2012;122:854–9.CrossRefPubMedGoogle Scholar
  60. 60.
    Wang CC, Chang MH, De Virgilio A, et al. Laryngeal electromyography and prognosis of unilateral vocal fold paralysis—a long-term prospective study. Laryngoscope. 2015;125(4):898–903.CrossRefPubMedGoogle Scholar
  61. 61.
    Wang CC, Chang MH, Wang CP, Liu SA. Prognostic indicators of unilateral vocal fold paralysis. Arch Otolaryngol Head Neck Surg. 2008;134:380–8.CrossRefPubMedGoogle Scholar
  62. 62.
    Crumley RL. Repair of the recurrent laryngeal nerve. Otolaryngol Clin North Am. 1990;23:553–63.PubMedGoogle Scholar
  63. 63.
    Volk GF, Hagen R, Pototschnig C, et al. Laryngeal electromyography: a proposal for guidelines of the European Laryngological Society. Eur Arch Otorhinolaryngol. 2012;269:2227–45.CrossRefPubMedGoogle Scholar
  64. 64.
    Hermann M, Alk G, Roka R, Glaser K, Freissmuth M. Laryngeal recurrent nerve injury in surgery for benign thyroid diseases: effect of nerve dissection and impact of individual surgeon in more than 27,000 nerves at risk. Ann Surg. 2002;235(2):261–8.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Randolph GW. Surgical anatomy of the recurrent laryngeal nerve. In: Randolph GW, editor. Surgery of the thyroid and parathyroid glands. Philadelphia: Elsevier Science; 2003.Google Scholar
  66. 66.
    Dralle H, Sekulla C, Lorenz K, Brauckhoff M, Machens A, German IONM Study Group. Intraoperative monitoring of the recurrent laryngeal nerve in thyroid surgery. World J Surg. 2008;32(7):1358–66.CrossRefPubMedGoogle Scholar
  67. 67.
    Dionigi G, Boni L, Rovera F, Bacuzzi A, Dionigi R. Neuromonitoring and video-assisted thyroidectomy: a prospective, randomized case-control evaluation. Surg Endosc. 2009;23(5):996–1003.CrossRefPubMedGoogle Scholar
  68. 68.
    Lo CY, Kwok KF, Yuen PW. A prospective evaluation of recurrent laryngeal nerve paralysis during thyroidectomy. Arch Surg. 2000;135(2):204–7.CrossRefPubMedGoogle Scholar
  69. 69.
    Caldarelli DD, Holinger LD. Complications and sequelae of thyroid surgery. Otolaryngol Clin North Am. 1980;13(1):85–97.PubMedGoogle Scholar
  70. 70.
    Patlow C, Norton J, Brennan M. Vocal cord paralysis and reoperative parathyroidectomy. Ann Surg. 1986;203:282.CrossRefGoogle Scholar
  71. 71.
    Wang LF, Lee KW, Kuo WR, Wu CW, Lu SP, Chiang FY. The efficacy of intraoperative corticosteroids in recurrent laryngeal nerve palsy after thyroid surgery. World J Surg. 2006;30(3):299–303.CrossRefPubMedGoogle Scholar
  72. 72.
    van der Zee CE, Schuurman T, Traber J, Gispen WH. Oral administration of nimodipine accelerates functional recovery following peripheral nerve damage in the rat. Neurosci Lett. 1987;83:143–8.CrossRefPubMedGoogle Scholar
  73. 73.
    Angelov DN, Neiss WF, Streppel M, Andermahr J, Mader K, Stennert E. Nimodipine accelerates axonal sprouting after surgical repair of rat facial nerve. J Neurosci. 1996;16:1041–8.PubMedGoogle Scholar
  74. 74.
    Mattsson P, Aldskogius H, Svensson M. Nimodipine-induced improved survival rate of facial motor neurons following intracranial transection of the facial nerve in the adult rat. J Neurosurg. 1999;90:760–5.CrossRefPubMedGoogle Scholar
  75. 75.
    Crumley RL. Laryngeal synkinesis revisited. Ann Otol Rhinol Laryngol. 2000;109:365–71.CrossRefPubMedGoogle Scholar
  76. 76.
    Kater SB, Mattson MP, Cohan C, Connor J. Calcium regulation of the neuronal growth cone. Trends Neurosci. 1988;11:315–21.CrossRefPubMedGoogle Scholar
  77. 77.
    Kater SB, Mills LR. Regulation of growth cone behaviour by calcium. J Neurosci. 1991;11:891–9.PubMedGoogle Scholar
  78. 78.
    Gomez TM, Spitzer NC. In vivo regulation of axon extension and pathfinding by growth-cone calcium transients. Nature. 1999;397:350–5.CrossRefPubMedGoogle Scholar
  79. 79.
    Gomez TM, Spitzer NC. Regulation of growth cone behavior by calcium: new dynamics to earlier perspectives. J Neurobiol. 2000;44:174–83.CrossRefPubMedGoogle Scholar
  80. 80.
    Gomez TM, Zheng JQ. The molecular basis for calcium-dependent axon pathfinding. Nat Rev Neurosci. 2006;7:115–25.CrossRefPubMedGoogle Scholar
  81. 81.
    Van den Kerckhoff W, Drewes LR. Transfer of the calcium antagonists nifedipine and nimodipine across the blood brain barrier and their regional distribution in vivo. J Cereb Blood Flow Metab. 1985;5(Suppl1):459–60.Google Scholar
  82. 82.
    Mattsson P, Janson AM, Aldskogius H, Svensson M. Nimodipine promotes regeneration and functional recovery after intracranial facial nerve crush. J Comp Neurol. 2001;437:106–17.CrossRefPubMedGoogle Scholar
  83. 83.
    Angelov DN, Neiss WF, Gunkel A, Streppel M, Guntinaslichius O, Stennert E. Nimodipine-accelerated hypoglossal sprouting prevents the postoperative hyperinnervation of target muscles after hypoglossal-facial anastomosis in the rat. Restor Neurol Neurosci. 1997;11:109–21.PubMedGoogle Scholar
  84. 84.
    Hydman J, Remahl S, Bjorck G, Svensson M, Mattsson P. Nimodipine improves reinnervation and neuromuscular function after injury to the recurrent laryngeal nerve in the rat. Ann Otol Rhinol Laryngol. 2007;116:623–30.CrossRefPubMedGoogle Scholar
  85. 85.
    Mattsson P, Bjorck G, Remahl S, et al. Nimodipine and microsurgery induced recovery of the vocal cord after recurrent laryngeal nerve resection. Laryngoscope. 2005;115:1863–5.CrossRefPubMedGoogle Scholar
  86. 86.
    Rosen CA, Smith L, Young V, Krishna P, Muldoon MF, Munin MC. Prospective investigation of nimodipine for acute vocal fold paralysis. Muscle Nerve. 2014;50:114–8.CrossRefPubMedGoogle Scholar
  87. 87.
    Sridharan SS, Rosen CA, Smith LJ, Young VN, Munin MC. Timing of nimodipine therapy for the treatment of vocal fold paralysis. Laryngoscope. 2015;125:186–90.CrossRefPubMedGoogle Scholar
  88. 88.
    Scheller C, Richter HP, Engelhardt M, Koenig R, Antoniadis G. The influence of prophylactic vasoactive treatment on cochlear and facial nerve functions after vestibular schwannoma surgery: a prospective and open-label randomized pilot study. Neurosurgery. 2007;61:92–7; discussion 97–8.CrossRefPubMedGoogle Scholar
  89. 89.
    Scheller C, Wienke A, Wurm F, et al. Neuroprotective efficacy of prophylactic enteral and parenteral nimodipine treatment in vestibular schwannoma surgery: a comparative study. J Neurol Surg A Cen Eur Neurosurg. 2014;75:251–8.Google Scholar
  90. 90.
    Scheller K, Scheller C. Nimodipine promotes regeneration of peripheral facial nerve function after traumatic injury following maxillofacial surgery: an off label pilot-study. J Craniomaxillofac Surg. 2012;40:427–34.CrossRefPubMedGoogle Scholar
  91. 91.
    Scheller K, Scheller C. Nimodipine for peripheral nerve recovery after maxillofacial and vestibular schwannoma surgery. Muscle Nerve. 2014;50:1026–7.CrossRefPubMedGoogle Scholar
  92. 92.
    Strauss C, Romstock J, Fahlbusch R, Rampp S, Scheller C. Preservation of facial nerve function after postoperative vasoactive treatment in vestibular schwannoma surgery. Neurosurgery. 2006;59:577–84; discussion 577–84.CrossRefPubMedGoogle Scholar
  93. 93.
    Li L, Oppenheim RW, Lei M, Houenou LJ. Neurotrophic agents prevent motoneuron death following sciatic nerve section in the neonatal mouse. J Neurobiol. 1994;25:759–66.CrossRefPubMedGoogle Scholar
  94. 94.
    Li L, Wu W, Lin LF, Lei M, Oppenheim RW, Houenou LJ. Rescue of adult mouse motoneurons from injury-induced cell death by glial cell line-derived neurotrophic factor. Proc Natl Acad Sci U S A. 1995;92:9771–5.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Lo AC, Li L, Oppenheim RW, Prevette D, Houenou LJ. Ciliary neurotrophic factor promotes the survival of spinal sensory neurons following axotomy but not during the period of programmed cell death. Exp Neurol. 1995;134:49–55.CrossRefPubMedGoogle Scholar
  96. 96.
    Sendtner M, Dittrich F, Hughes RA, Thoenen H. Actions of CNTF and neurotrophins on degenerating motoneurons: preclinical studies and clinical implications. J Neurol Sci. 1994;124:77–83.CrossRefPubMedGoogle Scholar
  97. 97.
    Verge VM, Gratto KA, Karchewski LA, Richardson PM. Neurotrophins and nerve injury in the adult. Philos Trans R Soc Lond B Biol Sci. 1996;351:423–30.CrossRefPubMedGoogle Scholar
  98. 98.
    Mattsson P, Aldskogius H, Svensson M. The novel pyrrolopyrimidine PNU-101033-E improves facial motor neuron survival following intracranial axotomy of the facial nerve in the adult rat. J Neurotrauma. 1999;16:793–803.CrossRefPubMedGoogle Scholar
  99. 99.
    Short DJ, El Masry WS, Jones PW. High dose methylprednisolone in the management of acute spinal cord injury—a systematic review from a clinical perspective. Spinal Cord. 2000;38:273–86.CrossRefPubMedGoogle Scholar
  100. 100.
    Schietroma M, Cecilia EM, Carlei F, et al. Dexamethasone for the prevention of recurrent laryngeal nerve palsy and other complications after thyroid surgery: a randomized double-blind placebo-controlled trial. JAMA Otolaryngol Head Neck Surg. 2013;139:471–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Gianlorenzo Dionigi
    • 1
    Email author
  • Gregory W. Randolph
    • 2
    • 3
    • 4
  • Per Mattsson
    • 5
  1. 1.1st Division of Surgery, Department of Surgical Sciences and Human MorphologyUniversity of InsubriaVareseItaly
  2. 2.The Claire and John Bertucci Endowed Chair in Thyroid Surgery OncologyHarvard Medical SchoolBostonUSA
  3. 3.Division of Thyroid and Parathyroid Endocrine SurgeryDepartment of Otolaryngology—Head and Neck Surgery, Massachusetts Eye and Ear InfirmaryBostonUSA
  4. 4.Department of Surgery, Endocrine Surgery ServiceMassachusetts General HospitalBostonUSA
  5. 5.Department of Endocrine/Sarcoma Surgery/Institution of Clinical NeuroscienceKarolinska University Hospital/Karolinska InstitutetStockholmSweden

Personalised recommendations