Advertisement

Infrasonic and Seismic Communication in the Vertebrates with Special Emphasis on the Afrotheria: An Update and Future Directions

  • Peter M. Narins
  • Angela S. Stoeger
  • Caitlin O’Connell-Rodwell
Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 53)

Abstract

Infrasonic and seismic communication in terrestrial vertebrates is generally poorly known. Moreover, studies of these communication modalities have been restricted to relatively few vertebrate groups. In this chapter we begin with the non-Afrotherian vertebrates and review what is known about their infrasonic (including birds and mammals) and seismic (including amphibians, reptiles, birds, and mammals) communication. We then devote special sections to the Afrotherian vertebrates, concentrating on (1) infrasonic communication in elephants, (2) seismic communication in elephants, and (3) seismic communication in golden moles (Chrysocloridae). Motivated by the lack of detailed knowledge of vibration communication in chrysochlorids, we furnish a blueprint for a set of experiments that would provide novel and interesting data to fill the lacunae in our understanding of seismic signal detection and localization by these enigmatic animals.

Keywords

Acoustic camera Acoustic communication Amphibian papilla Basilar papilla Golden moles Infrasound Mole-rats Moles Rayleigh waves Rumble vocalizations Substrate-borne vibrations Vibration communication 

References

  1. Arnason, B. T., Hart, L. A., & O’Connell-Rodwell, C. E. (2002). The properties of geophysical fields and their effects on elephants and other animals. Journal of Comparative Psychology, 116(2), 123–132.Google Scholar
  2. Au, W. W. L. (1993). The sonar of dolphins. New York: Springer.Google Scholar
  3. Baotic, A., Sicks, F., & Stoeger, A. S. (2015). Nocturnal “humming“ vocalizations: Adding a piece to the puzzle of giraffe vocal communication. BMC Research Notes, 8, 425.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Barklow, W. E. (2004). Amphibious communication with sound in hippos, Hippopotamus amphibious. Behaviour, 68, 1125–1132.CrossRefGoogle Scholar
  5. Barnes, L. G., Domning, D. P., & Ray, C. E. (1985). Status of studies on fossil marine mammals. Marine Mammal Science, 1(1), 15–53.CrossRefGoogle Scholar
  6. Barnett, K. E., Cocroft, R. B., & Fleishman, L. J. (1999). Possible communication by substrate vibration in a chameleon. Copeia, 1999(1), 225–228.CrossRefGoogle Scholar
  7. Beranek, L. L. (1988). Acoustical measurements. Melville, NY: American Institute of Physics.Google Scholar
  8. Berlin, C. I., Hood, L. J., Barlow, E. K., Morehouse, C. R., & Smith, E. G. (1991). Derived guinea pig compound VIIIth nerve action potentials to continuous pure tones. Hearing Research, 52, 271–280.PubMedCrossRefGoogle Scholar
  9. Bishop, A. M., Denton, P., Pomeroy, P., & Twiss, S. (2015). Good vibrations by the beach boys: Magnitude of substrate vibrations is a reliable indicator of male grey seal size. Animal Behaviour, 100, 74–82.CrossRefGoogle Scholar
  10. Bolanowski, S., & Zwislocki, J. J. (1984). Intensity and frequency characteristics of Pacinian corpuscle. II. Receptor potentials. Journal of Neurophysiology, 51, 812–830.PubMedGoogle Scholar
  11. Bouley, D. M., Alarcon, C., Hildebrandt, T., & O’Connell-Rodwell, C. E. (2007). The distribution, density and three-dimensional histomorphology of Pacinian corpuscles in the foot of the Asian elephant (Elephas maximus) and their potential role in seismic communication. Journal of Anatomy, 211(4), 428–435.PubMedPubMedCentralGoogle Scholar
  12. Bradbury, J. W., & Vehrencamp, S. L. (2011). Principles of animal communication (2nd ed.). Sunderland, MA: Sinauer.Google Scholar
  13. Budde, C., & Klump, G. M. (2003). Vocal repertoire of the black rhino Diceros bicornis ssp. And possibilities of individual identification. Mammalian Biology, 68, 42–47.Google Scholar
  14. Caldwell, M. S., Johnston, G. R., McDaniel, J. G., & Warkentin, K. M. (2010a). Vibrational signaling in the agonistic interactions of red-eyed treefrogs. Current Biology, 20, 1012–1017.PubMedCrossRefGoogle Scholar
  15. Caldwell, M. S., McDaniel, J. G., & Warkentin, K. M. (2010b). Is it safe? Red-eyed treefrog embryos assessing predation risk use two features of rain vibrations to avoid false alarms. Animal Behaviour, 79, 255–260.CrossRefGoogle Scholar
  16. Capranica, R. R., & Moffat, A. J. M. (1983). Neurobehavioral correlates of sound communication in anurans. In J.-P. Ewert, R. R. Capranica, & D. J. Ingle (Eds.), Advances in vertebrate neuroethology (pp. 701–730). London: Plenum Press.CrossRefGoogle Scholar
  17. Catania, K. C. (1995). Structure and innervation of the sensory organs on the snout of the star-nosed mole. Journal of Comparative Neurology, 351, 536–548.PubMedCrossRefGoogle Scholar
  18. Charif, R. A., Ramey, R. R., Langbauer, W. R., Payne, K. B., Martin, R. B., & Brown, L. M. (2005). Spatial relationships and matrilineal kinship in African savanna elephant (Loxodonta africana) clans. Behavioural Ecology and Sociobiology, 57(4), 327–338.CrossRefGoogle Scholar
  19. Christensen, C. B., Christensen-Dalsgaard, J., Brandt, C., & Masden, P. T. (2012). Hearing with an atympanic ear: Good vibration and poor sound-pressure detection in the royal python, Python regius. Journal of Experimental Biology, 215, 331–342.PubMedCrossRefGoogle Scholar
  20. Christensen-Dalsgaard, J., Brandt, C., Wilson, M., Wahlberg, M., & Teglberg, P. M. (2011). Hearing in the African lungfish (Protopterus annectens): Pre-adaptation for pressure hearing in tetrapods? Biology Letters, 7, 139–141.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Christensen-Dalsgaard, J., & Jørgensen, M. B. (1988). The response characteristics of vibration-sensitive saccular fibers in the grassfrog, Rana temporaria. Journal of Comparative Physiology, 162, 633–638.PubMedCrossRefGoogle Scholar
  22. Christensen-Dalsgaard, J., & Jørgensen, M. B. (1996). Sound and vibration sensitivity of VIIIth nerve fibers in the grassfrog, Rana temporaria. Journal of Comparative Physiology, 179, 437–445.PubMedGoogle Scholar
  23. Christensen-Dalsgaard, J., Ludwig, T. A., & Jørgensen, M. B. (2002). Call diversity in an old world treefrog: Level dependence and latency of acoustic responses. Bioacoustics, 13, 21–35.CrossRefGoogle Scholar
  24. Christensen-Dalsgaard, J., & Narins, P. M. (1993). Sound and vibration sensitivity of VIIIth nerve fibers in the frogs Leptodactylus albilabris and Rana pipiens pipiens. Journal of Comparative Physiology, 172, 653–662.PubMedGoogle Scholar
  25. Christensen-Dalsgaard, J., & Walkowiak, W. (1999). In vitro and in vivo responses of saccular and caudal nucleus neurons in the grass frog (Rana temporaria). European Journal of Morphology, 37(2–3), 206–210.PubMedCrossRefGoogle Scholar
  26. Cocroft, R. B., Gogala, M., Hill, P. S. M., & Wessel, A. (2014). Studying vibrational communication. Heidelberg, Germany: Springer.CrossRefGoogle Scholar
  27. Coles, R. B., Gower, D. M., Boyd, P. J., & Lewis, D. B. (1982). Acoustic transmission through the head of the common mole, Talpa europaea. Journal of Experimental Biology, 101, 337–341.PubMedGoogle Scholar
  28. Corfield, J. R., Krilow, J. M., Vande Ligt, M. N., & Iwaniuk, A. N. (2013). A quantitative morphological analysis of the inner ear of galliform birds. Hearing Research, 304, 111–127.PubMedCrossRefGoogle Scholar
  29. de Silva, S. (2010). Acoustic communication in the Asian elephant, Elephas maximus. Behaviour, 147, 825–852.CrossRefGoogle Scholar
  30. Doody, J. S., Stewart, B., Camacho, C., & Christian, K. (2012). Good vibrations? Sibling embryos expedite hatching in a turtle. Animal Behaviour, 83, 645–651.CrossRefGoogle Scholar
  31. Dorward, P. K., & McIntyre, A. K. (1980). Responses of vibration-sensitive receptors in the interosseous region of the duck’s hind limb. Journal of Physiology, 219, 77–87.CrossRefGoogle Scholar
  32. Ferrara, C. R., Vogt, R. C., Sousa-Lima, R. S., Tardio, B. M. R., & Bernardes, V. C. D. (2014). Sound communication and social behavior in an Amazonian river turtle (Podocnemis expansa). Herpetologica, 70(2), 149–156.CrossRefGoogle Scholar
  33. Fielden, L. J., Perrin, M. R., & Hickman, G. C. (1990). Feeding ecology and foraging behaviour of the Namib Desert golden mole, Eremitalpa granti namibensis (Chrysochloridae). Journal of Zoology (London), 220, 367–389.CrossRefGoogle Scholar
  34. Fischer, M. S. (1990). Un trait unique de l’oreille des elephants et des sireniens (Mammalia): Un paradoxe phylogenetique. Comptes Rendus de l’Académie des Sciences, 311(4), 157–162.Google Scholar
  35. Fitch, W. T. (2006). Production of vocalizations in mammals. In K. Brown (Ed.), Encyclopedia of language and linguistics (pp. 115–212). Oxford, England: Elsevier.CrossRefGoogle Scholar
  36. Forster Cooper, C. (1928). On the ear region of certain of the Chrysochloridae. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 216, 265–283.CrossRefGoogle Scholar
  37. Francescoli, G. (2000). Sensory capabilities and communication in subterranean rodents. In E. A. Lacey, J. L. Patton, & G. N. Cameron (Eds.), Life underground: The biology of subterranean rodents (pp. 111–144). Chicago: The University of Chicago Press.Google Scholar
  38. Freeman, A. R., & Hare, J. F. (2015). Infrasound in mating displays: A peacock’s tale. Animal Behaviour, 102, 241–250.CrossRefGoogle Scholar
  39. Gaeth, A. P., Short, R. V., & Renfree, M. B. (1999). The developing renal, reproductive, and respiratory systems of the African elephant suggest an aquatic ancestry. Proceedings of the National Academy of Sciences of the USA, 96, 5555–5558.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Garstang, M. (2004). Long-distance, low-frequency elephant communication. Journal of Comparative Physiology, 190, 791–805.PubMedCrossRefGoogle Scholar
  41. Garstang, M., Larom, D., Raspet, R., & Lindeque, M. (1995). Atmospheric controls on elephant communication. Journal of Experimental Biology, 198, 939–951.PubMedGoogle Scholar
  42. Gerstein, E. R., Gerstein, L., Forsythe, S. E., & Blue, J. E. (1999). The underwater audiogram of the West Indian manatee (Trichechus manatus). Journal of the Acoustical Society of America, 105, 3575–3583.PubMedCrossRefGoogle Scholar
  43. Giles, J. C., Davis, J. A., McCauley, X., & Kuchling, G. (2009). Voice of the turtle: The underwater acoustic repertoire of the long-necked freshwater turtle, Chelodina oblonga. Journal of the Acoustical Society of America, 126, 434–443.PubMedCrossRefGoogle Scholar
  44. Greenwood, D. (1961). Critical bandwidth and the frequency coordinates of the basilar membrane. Journal of the Acoustical Society of America, 33(484), 1344–1356.CrossRefGoogle Scholar
  45. Gridi-Papp, M., & Narins, P. M. (2010). Seismic detection and communication in amphibians. In C. E. O’Connell-Rodwell (Ed.), The use of vibrations in communication: Properties, mechanisms and function across taxa (pp. 69–83). Trivandrum, India: Transworld Research Network.Google Scholar
  46. Gunther, R. H., O’Connell-Rodwell, C. E., & Klemperer, S. L. (2004). Seismic waves from elephant vocalizations: A possible communication mode? Geophysical Research Letters, 31(L11602), 1–4.Google Scholar
  47. Hagstrum, J. T. (2000). Infrasound and the avian navigational map. The Journal of Experimental Biology, 203, 1103–1111.PubMedGoogle Scholar
  48. Hamilton, P. M. (1957). Noise-masked thresholds as a function of tonal duration and masking noise bandwidth. Journal of the Acoustical Society of America, 29, 506–511.CrossRefGoogle Scholar
  49. Hart, B. L., Hart, L. A., McCoy, M., & Sarath, C. R. (2001). Cognitive behaviour in Asian elephants: Use and modification of branches for fly switching. Animal Behaviour, 62(5), 839–847.CrossRefGoogle Scholar
  50. Hartline, P. H. (1971). Physiological basis for detection of sound and vibration in snakes. Journal of Experimental Biology, 54, 349–371.PubMedGoogle Scholar
  51. Hartman, W. M. (1999). How we localize sound. Physics Today, 52, 24.CrossRefGoogle Scholar
  52. Heffner, R. S., & Heffner, H. E. (1980). Hearing in the elephant (Elephas maximus). Science, 208(4443), 518–520.PubMedCrossRefGoogle Scholar
  53. Heffner, R. S., & Heffner, H. E. (1982). Hearing in the elephant (Elephas maximus): Absolute sensitivity, frequency discrimination, and sound localization. Journal of Comparative Physiology and Psychology, 96(6), 926–944.CrossRefGoogle Scholar
  54. Heffner, R. S., Heffner, H. E., & Stichman, N. (1982). Role of the elephant pinna in sound localization. Animal Behaviour, 30(2), 628–630.CrossRefGoogle Scholar
  55. Heffner, H. E., Koay, G., Hill, E. M., & Heffner, R. S. (2013). Conditioned suppression/avoidance as a procedure for testing hearing in birds: The domestic pigeon (Columba livia). Behavioural Research, 45, 383–392.CrossRefGoogle Scholar
  56. Heil, P., & Neubauer, H. (2003). A unifying basis of auditory thresholds based on temporal summation. Proceedings of the National Academy of Sciences of the USA, 100(10), 6151–6156.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Henson, O. W. (1974). Comparative anatomy of the middle ear. In W. D. Keidel & W. D. Neff (Eds.), Handbook of sensory physiology (Auditory system, Vol. V/1, pp. 39–110). Berlin, Germany: Springer.Google Scholar
  58. Herbst, C. T., Stoeger, A. S., Frey, R., Lohscheller, J., Titze, I. R., Gumpenberger, M., et al. (2012). How low can you go? Physical production mechanism of elephant infrasonic vocalization. Science, 337(6094), 595–599.PubMedCrossRefGoogle Scholar
  59. Herculano-Houzel, S., Avelino-de-Souza, K., Neves, K., Porfírio, J., Messeder, D., Mattos Feijó, L., et al. (2014). The elephant brain in numbers. Frontiers in Neuroanatomy, 8, 46. doi: 10.3389/fnana.2014.00046.PubMedPubMedCentralGoogle Scholar
  60. Heth, G., Frankenberg, E., & Nevo, E. (1986). Adaptive optimal sound for vocal communication in tunnels of a subterranean mammal (Spalax ehrenbergi). Experientia, 42, 1287–1289.PubMedCrossRefGoogle Scholar
  61. Hetherington, T. E. (1989). The use of vibratory cues for detection of insect prey by the sandswimming lizard Scincus scincus. Animal Behaviour, 37, 290–297.CrossRefGoogle Scholar
  62. Hill, P. S. M. (2008). Vibration communication in animals. Cambridge, MA: Harvard University Press.Google Scholar
  63. Hill, P. S. M. (2009). How do animals use substrate-borne vibrations as an information source? Naturwissenshaften, 96, 1355–1371.CrossRefGoogle Scholar
  64. Hill, E. M., Koay, G., Heffner, R. S., & Heffner, H. E. (2014). Audiogram of the chicken (Gallus gallus domesticus) from 2 Hz to 9 kHz. Journal of Comparative Physiology, 200, 863–870.PubMedCrossRefGoogle Scholar
  65. Hörster, W. (1990). Vibrational sensitivity of the wing of the pigeon (Columba livia)—A study using heart rate conditioning. Journal of Comparative Physiology, 167, 545–549.Google Scholar
  66. Ishimoto, M., & Idia, K. (1936). Determinations of elastic constants of soil by means of vibration methods. Part I. Young’s modulus. Bulletin of Earthquake Research of the Institute Tokyo, 14, 632–657.Google Scholar
  67. Jackson, L. L., Heffner, R. S., & Heffner, H. E. (1999). Free-field audiogram of the Japanese macaque (Macaca fuscata). Journal of the Acoustical Society of America, 106, 3017–3023.PubMedCrossRefGoogle Scholar
  68. Ketten, D. R. (2000). Cetacean ears. In W. W. L. Au, A. N. Popper, & R. R. Fay (Eds.), Hearing by whales and dolphins (pp. 43–108). New York: Springer.CrossRefGoogle Scholar
  69. Ketten, D. R., Odell, D. K., & Domning, D. P. (1992). Structure and adaptation of the manatee ear. In J. Thomas et al. (Eds.), Marine mammal sensory systems (pp. 77–95). New York: Plenum Press.CrossRefGoogle Scholar
  70. Kimchi, T., Reshef, M., & Terkel, J. (2005). Evidence for the use of reflected self-generated seismic waves for spatial orientation in a blind subterranean mammal. Journal of Experimental Biology, 208, 647–659.PubMedCrossRefGoogle Scholar
  71. King, L. E., Soltis, J., Douglas-Hamilton, I., Savage, A., & Vollrath, F. (2010). Bee threat elicits alarm call in African elephants. PloS One, 5(4), e10346. doi: 10.1371/journal.pone.0010346.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Koyama, H., Lewis, E. R., Leverenz, E. L., & Baird, R. A. (1982). Acute seismic sensitivity in the bullfrog ear. Brain Research, 250, 168–172.PubMedCrossRefGoogle Scholar
  73. Kreithen, M. L., & Quine, D. B. (1979). Infrasound detection by the homing pigeon: A behavioral audiogram. Journal of Comparative Physiology, 129, 1–4.CrossRefGoogle Scholar
  74. Langbauer, W. R. (2000). Elephant communication. Zoo Biology, 19(5), 425–445.CrossRefGoogle Scholar
  75. Langbauer, W. R., Payne, K. B., Charif, R. A., Rapaport, L., & Osborn, F. (1991). African elephants respond to distant playbacks of low-frequency calls. The Journal of Experimental Biology, 157(1), 35–46.Google Scholar
  76. Larom, D., Garstang, M., Payne, K., Raspet, R., & Lindeque, M. (1997). The influence of surface atmospheric conditions on the range and area reached by animal vocalizations. The Journal of Experimental Biology, 200(3), 421–434.PubMedGoogle Scholar
  77. Leong, K. M., Ortolani, A., Burks, K. D., Mellen, J. D., & Savage, A. (2003). Quantifying acoustic and temporal characteristics of vocalizations for a group of captive African elephants (Loxodonta africana). Bioacoustics, 13(3), 213–232.CrossRefGoogle Scholar
  78. Lewis, E. R., & Narins, P. M. (1985). Do frogs communicate with seismic signals? Science, 227, 187–189.PubMedCrossRefGoogle Scholar
  79. Lewis, E. R., Narins, P. M., Cortopassi, K. A., Yamada, W. M., Poinar, E. H., Moore, S. W., et al. (2001). Do male white-lipped frogs use seismic signals for intraspecific communication? American Zoologist, 41, 1185–1199.Google Scholar
  80. Lewis, E. R., Narins, P. M., Jarvis, J. U. M., Bronner, G., & Mason, M. J. (2006). Preliminary evidence for the use of microseismic cues for navigation by the Namib golden mole. Journal of the Acoustical Society of America, 119, 1260–1268.PubMedCrossRefGoogle Scholar
  81. Lieberman, P., & Blumstein, S. E. (1988). Speech physiology, speech perception, and acoustic phonetics. Cambridge, England: Cambridge University Press.CrossRefGoogle Scholar
  82. Lombard, R. E., & Hetherington, T. E. (1993). Structural basis of hearing and sound transmission. In J. Haken & B. K. Hall (Eds.), The skull (Vol. 3, pp. 241–302). London: University of Chicago Press.Google Scholar
  83. Lopez, P. T., Narins, P. M., Lewis, E. R., & Moore, S. W. (1988). Acoustically-induced call modification in the white-lipped frog, Leptodactylus albilabris. Animal Behaviour, 36, 1295–1308.CrossRefGoogle Scholar
  84. Mack, A. L., & Jones, J. (2003). Low-frequency vocalizations by cassowaries (Casuarius spp.). The Auk, 120(4), 1062–1068.CrossRefGoogle Scholar
  85. Maier, V. (1982). Acoustic communication in the Guinea fowl (Numida meleagris): Structure and use of vocalizations, and the principles of message coding. Zeitschrift für Tierpsychologie, 59(1), 28–83.Google Scholar
  86. Makous, J. C., Friedman, R. M., & Vierck, C. J., Jr. (1995). A critical band filter in touch. Journal of Neuroscience, 15(4), 2808–2818.PubMedGoogle Scholar
  87. Manley, G. A., & Kraus, J. E. M. (2010). Exceptional high-frequency hearing and matched vocalizations in Australian pygopod geckos. Journal of Experimental Biology, 213, 1876–1885.PubMedCrossRefGoogle Scholar
  88. Marasco, P. D., & Catania, K. C. (2007). Response properties of primary afferents supplying Eimer’s organ. Journal of Experimental Biology, 213, 765–780.Google Scholar
  89. Maseko, B. C., Spocter, M. A., Haagensen, M., & Manger, P. R. (2012). Elephants have relatively the largest cerebellum size of mammals. The Anatomical Record, 295, 661–672.Google Scholar
  90. Maseko, B. C., Patzke, N., Fuxe, K., & Manger, P. R. (2013). Architectural organization of the African elephant diencephalon and brainstem. Brain, Behaviour and Evolution, 82(2), 83–128.CrossRefGoogle Scholar
  91. Mason, M. J. (2003a). Morphology of the middle ear of golden moles (Chrysochloridae). Journal of Zoology (London), 260, 391–403.CrossRefGoogle Scholar
  92. Mason, M. J. (2003b). Bone conduction and seismic sensitivity in golden moles (Chrysochloridae). Journal of Zoology (London), 260, 405–413.CrossRefGoogle Scholar
  93. Mason, M. J. (2004). Functional morphology of the middle ear in Chlorotalpa golden moles (Mammalia, Chrysochloridae): Predictions from three models. Journal of Morphology, 261, 162–174.PubMedCrossRefGoogle Scholar
  94. Mason, M. J. (2007a). Pathways for sound transmission to the inner ear in amphibians. In P. M. Narins, A. S. Feng, R. R. Fay, & A. N. Popper (Eds.), Hearing and sound communication in amphibians (pp. 147–183). New York: Springer.Google Scholar
  95. Mason, M. J. (2007b). Massive mallei in moles: Middle ear adaptations subserving seismic sensitivity. Proceedings of the Institute of Acoustics, 29, 69–76.Google Scholar
  96. Mason, M. J. (2014). Internally coupled ears in mammals. Abstract of presentation for the symposium internally coupled ears: Evolutionary origins, mechanisms, and neuronal processing from a biomimetic perspective, T.-U. Garching, Germany, 7.Google Scholar
  97. Mason, M. J., & Narins, P. M. (2001). Seismic signal use by fossorial mammals. American Zoologist, 41, 1171–1184.Google Scholar
  98. Mason, M. J., & Narins, P. M. (2002). Vibrometric studies of the middle ear of the bullfrog (Rana catesbeiana). II: The operculum. Journal of Experimental Biology, 205, 3167–3176.PubMedGoogle Scholar
  99. Mason, M. J., & Narins, P. M. (2010). Seismic sensitivity and communication in subterranean mammals. In C. E. O’Connell-Rodwell (Ed.), The use of vibrations in communication: Properties, mechanisms and function across taxa (pp. 121–139). Trivandrum, India: Transworld Research Network.Google Scholar
  100. McComb, K., Moss, C., Sayialel, S., & Baker, L. (2000). Unusually extensive networks of vocal recognition in African elephants. Animal Behaviour, 59(6), 1103–1109.PubMedCrossRefGoogle Scholar
  101. McComb, K., Reby, D., Baker, L., Moss, C., & Sayialel, S. (2003). Long-distance communication of acoustic cues to social identity in African elephants. Animal Behaviour, 65(2), 317–329.CrossRefGoogle Scholar
  102. McIntyre, A. K. (1980). Biological seismography. Trends in Neuroscience, 3(9), 202–205.CrossRefGoogle Scholar
  103. Merzenich, M. M., Kitzes, L., & Aitkin, L. (1973). Anatomical and physiological evidence for auditory specialization in the mountain beaver (Aplodontia rufa). Brain Research, 58, 331–344.PubMedCrossRefGoogle Scholar
  104. Moss, C. J. (1983). Oestrous behaviour and female choice in the African elephant. Behaviour, 86, 167–196.CrossRefGoogle Scholar
  105. Narins, P. M. (1990). Seismic communication in anuran amphibians. Bioscience, 40, 268–274.CrossRefGoogle Scholar
  106. Narins, P. M. (2001). Vibration communication in vertebrates. In F. Barth & A. Schmidt (Eds.), Ecology of sensing (pp. 127–148). Berlin, Germany: Springer.CrossRefGoogle Scholar
  107. Narins, P. M. & Clark, G. A. (2016). Principles of matched filtering with auditory examples from selected vertebrates. In G. von der Emde, E. Warrant (Eds.).The Ecology of Animal Senses: Matched Filtering for Economical Sensing (pp. 111-140). Heidelberg: Springer-Verlag.Google Scholar
  108. Narins, P. M., Feng, A. S., Yong, H.-S., & Christensen-Dalsgaard, J. (1998). Morphological, behavioral, and genetic divergence of sympatric morphotypes of the treefrog Polypedates leucomystax in Peninsula Malaysia. Herpetologica, 54, 129–142.Google Scholar
  109. Narins, P. M., & Lewis, E. R. (1984). The vertebrate ear as an exquisite seismic sensor. Journal of the Acoustical Society of America, 76, 1384–1387.PubMedCrossRefGoogle Scholar
  110. Narins, P. M., Lewis, E. R., Jarvis, J. U. M., & O’Riain, J. (1997). The use of seismic signals by fossorial southern African mammals: A neuroethological gold mine. Brain Research Bulletin, 44, 641–646.PubMedCrossRefGoogle Scholar
  111. Narins, P. M., Losin, N., & O’Connell-Rodwell, C. E. (2009). Seismic and vibrational signals in animals. In L. R. Squire (Ed.), Encyclopedia of neuroscience (pp. 555–559). Amsterdam: Elsevier.Google Scholar
  112. Narins, P. M., Reichman, O. J., Jarvis, J. U. M., & Lewis, E. R. (1992). Seismic signal transmission between burrows of the Cape mole-rat, Georychus capensis. Journal of Comparative Physiology, 170, 13–21.PubMedGoogle Scholar
  113. Nevo, E. (1961). Observations on Israeli populations of the mole rat Spalax E. ehrenbergi Nehring 1898. Mammalia, 25, 127–144.CrossRefGoogle Scholar
  114. Norris, K. S. (1968). The evolution of acoustic mechanisms in odontocete cetaceans. In E. T. Drake (Ed.), Evolution and environment (pp. 297–324). New Haven, CT: Yale University Press.Google Scholar
  115. Nowak, R. M. (1999). Walker’s mammals of the world (6th ed.). Baltimore: The Johns Hopkins University Press.Google Scholar
  116. Nummela, S. (1995). Scaling of the mammalian middle ear. Hearing Research, 85(1–2), 18–30.PubMedCrossRefGoogle Scholar
  117. O’Connell, C. E., Hart, L. A., & Arnason, B. (1999). Response to “Elephant hearing” [see comments]. Journal of the Acoustical Society of America 104, 1122–3 (1998). Journal of the Acoustical Society of America, 105, 2051–2052.PubMedCrossRefGoogle Scholar
  118. O’Connell-Rodwell, C. E. (2007). Keeping an “ear” to the ground: Seismic communication in elephants. Physiology, 22(4), 287–294.PubMedCrossRefGoogle Scholar
  119. O’Connell-Rodwell, C. E. (Ed.). (2010). The use of vibrations in communication: Properties, mechanisms and function across taxa. Trivandrum, India: Transworld Research Network.Google Scholar
  120. O’Connell-Rodwell, C. E., Arnason, B., & Hart, L. A. (2000). Seismic properties of elephant vocalizations and locomotion. Journal of the Acoustical Society of America, 108(6), 3066–3072.PubMedCrossRefGoogle Scholar
  121. O’Connell-Rodwell, C. E., Erckie, R., Kilian, W., Wood, J. D., Kinzley, C., Rodwell, T. C., et al. (2011). Exploring the use of acoustics as a tool in male elephant/human conflict mitigation. Journal of the Acoustical Society of America, 130(4 Pt 2), 2459.CrossRefGoogle Scholar
  122. O’Connell-Rodwell, C. E., Hart, L. A., & Arnason, B. T. (2001). Exploring the potential use of seismic waves as a communication channel by elephants and other large mammals. American Zoologist, 41(5), 1157–1170.Google Scholar
  123. O’Connell-Rodwell, C. E., & Wood, J. D. (2010). Vibration generation, propagation and detection in elephants. In C. E. O’Connell-Rodwell (Ed.), The use of vibrations in communication: Properties, mechanisms and function across taxa (pp. 121–139). Trivandrum, India: Transworld Research Network.Google Scholar
  124. O’Connell-Rodwell, C. E., Wood, J. D., Kinzley, C., Rodwell, T. C., Poole, J. H., & Puria, S. (2007). Wild African elephants (Loxodonta Africana) discriminate between familiar and unfamiliar conspecific seismic alarm calls. Journal of the Acoustical Society of America, 122(2), 823–830.PubMedCrossRefGoogle Scholar
  125. O’Connell-Rodwell, C. E., Wood, J. D., Rodwell, T. C., Puria, S., Partan, S. R., Keefe, R., et al. (2006). Wild elephant (Loxodonta africana) breeding herds respond to artificially transmitted seismic stimuli. Behavioural Ecology and Sociobiology, 59(6), 842–850.CrossRefGoogle Scholar
  126. O’Connell-Rodwell, C. E., Wood, J. D., Wyman, M., Redfield, S., Hart, L. A., & Puria, S. (2012). Antiphonal vocal bouts associated with departures in free-ranging African elephant family groups (Loxodonta africana). Bioacoustics, 21(3), 215–224.CrossRefGoogle Scholar
  127. Patzke, N., Olaleye, O., Haagensen, M., Hof, P. R., Ihunwo, A. O., & Manger, P. R. (2013a). Organization and chemical neuroanatomy of the African elephant (Loxodonta africana) hippocampus. Brain Structure and Function, 219(5), 1587–601. doi: 10.1007/s00429-013-0587-6.PubMedCrossRefGoogle Scholar
  128. Patzke, N., Spocter, M. A., Karlsson, K. Æ., Bertelsen, M. F., Haagensen, M., Chawana, R., et al. (2013b). In contrast to many other mammals, cetaceans have relatively small hippocampi that appear to lack adult neurogenesis. Brain, Structure and Function, 220(1), 361–83. doi: 10.1007/s00429-013-0660-1.CrossRefGoogle Scholar
  129. Payne, K. B., Langbauer, W. R., & Thomas, E. M. (1986). Infrasonic calls of the Asian elephant (Elephas maximus). Behavioural Ecology and Sociobiology, 18(4), 297–301.CrossRefGoogle Scholar
  130. Peterson, G. E., & Barney, H. (1952). Control methods used in a study of the vowels. Journal of the Acoustical Society of America, 24(175), 175–184.CrossRefGoogle Scholar
  131. Poole, J. H. (1989). Mate guarding, reproductive success and female choice in African elephants. Animal Behaviour, 37(5), 842–849.CrossRefGoogle Scholar
  132. Poole, J. H. (1999). Signals and assessment in African elephants: Evidence from playback experiments. Animal Behaviour, 58(1), 185–193.PubMedCrossRefGoogle Scholar
  133. Poole, J. H. (2011). Behavioral contexts of elephant acoustic communication. In C. J. Moss, H. Croze, & P. C. Lee (Eds.), The Amboseli elephants: A long-term perspective on a long-lived mammal (pp. 125–161). Chicago: The University of Chicago Press.CrossRefGoogle Scholar
  134. Poole, J. H., & Moss, C. J. (1981). Musth in the African elephant, Loxodonta africana. Nature, 292(5826), 830–831.PubMedCrossRefGoogle Scholar
  135. Poole, J. H., Payne, K., Langbauer, W. R., & Moss, C. J. (1988). The social contexts of some very low frequency calls of African elephants. Behavioural Ecology and Sociobiology, 22(5), 385–392.CrossRefGoogle Scholar
  136. Pye, J. D., & Langbauer, W. R. (1998). Ultrasound and infrasound. In S. L. Hopp & M. J. Owren (Eds.), Animal acoustic communication: Sound analysis and research methods (pp. 221–245). Berlin: Springer.CrossRefGoogle Scholar
  137. Rado, R., Himelfarb, M., Arensburg, B., Terkel, J., & Wollberg, Z. (1989). Are seismic communication signals transmitted by bone conduction in the blind mole-rat? Hearing Research, 41, 23–30.PubMedCrossRefGoogle Scholar
  138. Rado, R., Terkel, J., & Wollberg, Z. (1998). Seismic communication signals in the blind mole rat (Spalax ehrenbergi): Electrophysiological and behavioral evidence for their processing by the auditory system. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 183(4), 503–511.CrossRefGoogle Scholar
  139. Randall, J. A. (2010). Drummers and stompers: Vibrational communication in mammals. In C. E. O’Connell-Rodwell (Ed.), The use of vibrations in communication: Properties, mechanisms and function across taxa (pp. 99–120). Trivandrum, India: Transworld Research Network.Google Scholar
  140. Rasmussen, L. E. L., & Munger, B. L. (1996). The sensorineural specialization of the trunk tip (finger) of the Asian elephant (Elephas maximus). Anatomical Record, 246, 127–134.PubMedCrossRefGoogle Scholar
  141. Reby, D., & McComb, K. (2003). Anatomical constraints generate honesty acoustic cues to age and weight in the roars of red deer stags. Animal Behaviour, 65(3), 519–530.CrossRefGoogle Scholar
  142. Recanzone, G. H., Jenkins, W. M., Hradek, G. T., & Merzenich, M. M. (1992). Progressive improvement in discriminative abilities in adult owl monkeys performing a tactile frequency discrimination task. Journal of Neurophysiology, 67(5), 1015–1030.PubMedGoogle Scholar
  143. Reuter, T., Nummela, S., & Hemilea, S. (1998). Elephant hearing. Journal of the Acoustical Society of America, 104, 1122–1123.PubMedCrossRefGoogle Scholar
  144. Rosowski, J. J. (1994). Outer and middle ears. In R. R. Fay & A. N. Popper (Eds.), Comparative hearing: Mammals (pp. 172–247). New York: Springer.CrossRefGoogle Scholar
  145. Rujirawan, A., Stuart, B. L., & Aowphol, A. (2013). A new tree frog in the genus Polypedates (Anura: Rhacophoridae) from southern Thailand. Zootaxa, 3702(6), 545–565.PubMedCrossRefGoogle Scholar
  146. Saxod, R. (1996). Ontogeny of the cutaneous sensory organs. Microscopy Research and Technique, 34(4), 313–333.PubMedCrossRefGoogle Scholar
  147. Schermuly, L., & Klinke, R. (1990). Infrasound sensitive neurons in the pigeon cochlear ganglion. Journal of Comparative Physiology, 166, 355–363.PubMedGoogle Scholar
  148. Shen, J.-X. (1983). A behavioral study of vibrational sensitivity in the pigeon (Columba livia). Journal of Comparative Physiology, 152, 251–255.CrossRefGoogle Scholar
  149. Shipley, C., Stewart, B. S., & Bass, J. (1992). Seismic communication in northern elephant seals. In J. A. Thomas, R. A. Kastelein, & A. Y. Supin (Eds.), Marine mammal sensory systems (pp. 553–562). New York: Plenum Press.CrossRefGoogle Scholar
  150. Shoshani, J. (1998). Understanding proboscidean evolution: A formidable task. Trends in Ecology and Evolution, 13, 480–487.PubMedCrossRefGoogle Scholar
  151. Shoshani, J., Kupsky, W. J., & Marchant, G. H. (2006). Elephant brain. 1. Gross morphology, functions, comparative anatomy, and evolution. Brain Research Bulletin, 70(2), 124–157.PubMedCrossRefGoogle Scholar
  152. Sikes, S. K. (1971). The natural history of the African elephant. New York: Elsevier.Google Scholar
  153. Smotherman, M., & Narins, P. M. (2004). Evolution of the amphibian ear. In G. A. Manley, A. N. Popper, & R. R. Fay (Eds.), Evolution of the vertebrate auditory system (pp. 164–199). New York: Springer.CrossRefGoogle Scholar
  154. Soltis, J. (2010). Vocal communication in African elephants (Loxodonta africana). Zoo Biology, 29(2), 192–209.PubMedGoogle Scholar
  155. Soltis, J., King, L. E., Douglas-Hamilton, I., Vollrath, F., & Savage, A. (2014). African elephant alarm calls distinguish between threats from humans and bees. PLoS One, 9(2), e89403. doi: 10.1371/journal.pone.0089403.PubMedPubMedCentralCrossRefGoogle Scholar
  156. Soltis, J., Leighty, K. A., Wesolek, C. M., & Savage, A. (2009). The expression of affect in African elephants (Loxodonta africana) rumble vocalizations. Journal of Comparative Psychology, 123(2), 222–225.PubMedCrossRefGoogle Scholar
  157. Soltis, J., Leong, K., & Savage, A. (2005). African elephant vocal communication II: Rumble variation reflects individual identity and emotional state of callers. Animal Behaviour, 70(3), 589–599.CrossRefGoogle Scholar
  158. Springer, M. S., Cleven, G. C., Madsen, O., de Jong, W. W., Waddell, V. G., Amrine, H. M., et al. (1997). Endemic African mammals shake the phylogenetic tree. Nature, 388, 61–64.PubMedCrossRefGoogle Scholar
  159. Stanhope, M. J., Waddell, V. G., Madsen, O., de Jong, W., Hedges, S. B., Cleven, G. C., et al. (1998). Molecular evidence for multiple origins of Insectivora and for a new order of endemic African insectivore mammals. Proceedings of the National Academy of Sciences of the USA, 95, 9967–9972.PubMedPubMedCentralCrossRefGoogle Scholar
  160. Stenfelt, S., Wild, T., Hato, N., & Goode, R. L. (2003). Factors contributing to bone conduction: The outer ear. Journal of the Acoustical Society of America, 113(2), 902–913.PubMedCrossRefGoogle Scholar
  161. Stoeger, A. S., Heilmann, G., Zeppelzauer, M., Hensman, S., & Charlton, B. D. (2012). Visualizing sound emission of elephant vocalizations: Evidence for two rumble production types. PloS One, 7(11), e48907. doi: 10.1371/journal.pone.0048907.PubMedPubMedCentralCrossRefGoogle Scholar
  162. Stoeger, A., Zeppelzauer, M., & Baotic, A. (2014). Age-group estimation in free-ranging African elephants based on acoustic cues of low-frequency rumbles. Bioacoustics, 23(3), 231–46. doi: 10.1080/09524622.2014.888375.PubMedPubMedCentralCrossRefGoogle Scholar
  163. Stoeger-Horwath, A. S., Stoeger, S., Schwammer, H. M., & Kratochvil, H. (2007). Call repertoire of infant African elephants: First insights into the early vocal ontogeny. Journal of the Acoustical Society of America, 121(6), 3922–3931.PubMedPubMedCentralCrossRefGoogle Scholar
  164. Theurich, M., Langner, G., & Scheich, H. (1984). Infrasound responses in the midbrain of the guinea fowl. Neuroscience Letters, 49, 81–86.PubMedCrossRefGoogle Scholar
  165. van der Merwe, N. J., Bezuidenhout, A. J., & Seegers, C. D. (1995). The skull and mandible of the African elephant (Loxodonta africana). Onderstepoort Journal of Veterinary Research, 62, 245–260.PubMedGoogle Scholar
  166. Varanasi, U., Feldman, H. R., & Malin, D. C. (1975). Molecular basis for formation of lipid sound lens in echolocating cetaceans. Nature, 255, 340–343.CrossRefGoogle Scholar
  167. Varanasi, U., & Malin, D. C. (1971). Unique lipids of the porpoise (Tursiops gilli): Differences in triacylglycerols and wax esters of acoustic (mandibular canal and melon) and blubber tissues. Biochemica Biophysica Acta, 231, 415–418.CrossRefGoogle Scholar
  168. von Békésy, G. (1944/1960). Frequency analysis in the cochleas of various animals. In E. G. Wever (Ed.), Experiments in hearing (pp. 500–510), New York: McGraw-HillGoogle Scholar
  169. von Mayer, A., O’Brien, G., & Sarmiento, E. E. (1995). Functional and systematic implications of the ear in golden moles (Chrysochloridae). Journal of Zoology, 236(3), 417–430. doi: 10.1111/j.1469-7998.1995.tb02722.x/abstract.CrossRefGoogle Scholar
  170. Warkentin, K. M. (2005). How do embryos assess risk? Vibrational cues in predator-induced hatching in red-eyed treefrogs. Animal Behaviour, 70, 59–71.CrossRefGoogle Scholar
  171. Warkentin, K. M., & Caldwell, M. S. (2009). Assessing risk: Embryos, information, and escape hatching. In R. Dukas & J. Ratcliffe (Eds.), Cognitive ecology II. The evolutionary ecology of learning, memory, and information use (pp. 177–200). Chicago: University of Chicago Press.Google Scholar
  172. Warkentin, K. M., Caldwell, M. S., & McDaniel, J. G. (2006). Temporal pattern cues in vibrational risk assessment by embryos of the red-eyed treefrog, Agalychnis callidryas. Journal of Experimental Biology, 209, 1376–1384.PubMedCrossRefGoogle Scholar
  173. Warkentin, K. M., Caldwell, M. S., Siok, T. D., D’Amato, A. T., & McDaniel, J. G. (2007). Flexible information sampling in vibrational assessment of predation risk by red-eyed treefrog embryos. Journal of Experimental Biology, 210, 614–619.PubMedCrossRefGoogle Scholar
  174. Webb, G. J. W., Choquenot, D., & Whitehead, P. J. (1986). Nests, eggs, and embryonic development of Carettochelys insculpta (Chelonia: Carettochelidae) from Northern Australia. Journal of Zoology, 1, 521–550.CrossRefGoogle Scholar
  175. Weissengruber, G. E., Egger, G. F., Hutchinson, J. R., Groenewald, H. B., Elsasser, L., Famini, D., et al. (2006). The structure of the cushion in the feet of African elephants (Loxodonta africana). Journal of Anatomy, 209, 181–192.CrossRefGoogle Scholar
  176. Wever, E. G. (1973). The ear and hearing in the frog, Rana pipiens. Journal of Morphology, 141, 461–478.PubMedCrossRefGoogle Scholar
  177. Willi, U. B., Bronner, G. N., & Narins, P. M. (2006a). Ossicular differentiation of airborne and seismic stimuli in the Cape golden mole (Chrysochloris asiatica). Journal of Comparative Physiology, 192, 267–277.PubMedCrossRefGoogle Scholar
  178. Willi, U. B., Bronner, G. N., & Narins, P. M. (2006b). Middle ear dynamics in response to seismic stimuli in the Cape golden mole (Chrysochloris asiatica). Journal of Experimental Biology, 209, 302–313.PubMedCrossRefGoogle Scholar
  179. Yodlowski, M. L., Kreithen, M. L., & Keeton, W. T. (1977). Detection of atmospheric infrasound by homing pigeons. Nature, 265, 725–726.PubMedCrossRefGoogle Scholar
  180. Young, B. A., & Morain, M. (2002). The use of ground-borne vibrations for prey localization in the Sahara sand vipers (Cerastes). The Journal of Experimental Biology, 205, 661–665.PubMedGoogle Scholar
  181. Yu, X.-L., Lewis, E. R., & Feld, D. (1991). Seismic and auditory tuning curves from bullfrog saccular and amphibian papillar axons. Journal of Comparative Physiology, 169, 241–248.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Peter M. Narins
    • 1
  • Angela S. Stoeger
    • 2
  • Caitlin O’Connell-Rodwell
    • 3
  1. 1.Departments of Integrative Biology and Physiology, and Ecology and Evolutionary BiologyUniversity of California Los AngelesLos AngelesUSA
  2. 2.Department of Cognitive BiologyUZA 1, BiologiezentrumViennaAustria
  3. 3.Department of Otolaryngology, Head and Neck SurgeryStanford University School of MedicineStanfordUSA

Personalised recommendations