Application of Multi-Robot Systems to Disaster-Relief Scenarios with Limited Communication

  • Jason GregoryEmail author
  • Jonathan Fink
  • Ethan Stump
  • Jeffrey Twigg
  • John Rogers
  • David Baran
  • Nicholas Fung
  • Stuart Young
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 113)


In this systems description paper, we present a multi-robot solution for intelligence-gathering tasks in disaster-relief scenarios where communication quality is uncertain. First, we propose a formal problem statement in the context of operations research. The hardware configuration of two heterogeneous robotic platforms capable of performing experiments in a relevant field environment and a suite of autonomy-enabled behaviors that support operation in a communication-limited setting are described. We also highlight a custom user interface designed specifically for task allocation amongst a group of robots towards completing a central mission. Finally, we provide an experimental design and extensive, preliminary results for studying the effectiveness of our system.


Receive Signal Strength Inertial Measurement Unit Robotic Platform Goal Region Occupancy Grid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
  2. 2.
    Better Approach to Mobile Ad-Hoc Networking.
  3. 3.
    Clearpath Robotics Husky.
  4. 4.
  5. 5.
  6. 6.
  7. 7.
  8. 8.
  9. 9.
  10. 10.
  11. 11.
    Ubiquiti Networks.
  12. 12.
  13. 13.
    Archetti, C., Feillet, D., Hertz, A., Speranza, M.G.: The capacitated team orienteering and profitable tour problems. J. Oper. Res. Soc. 60(6):831–842 (2008)Google Scholar
  14. 14.
    Balakirsky, S., Carpin, S., Kleiner, A., Lewis, M., Visser, A., Wang, J., Ziparo, V.A.: Towards heterogeneous robot teams for disaster mitigation: results and performance metrics from robocup rescue. J. Field Robot. 24(11–12), 943–967 (2007)Google Scholar
  15. 15.
    Butzke, J., Daniilidis, K., Kushleyev, A., Lee, D.D., Likhachev, M., Phillips, C., Phillips, M.: The University of Pennsylvania MAGIC 2010 multi-robot unmanned vehicle system. J. Field Robot. 29(5), 745–761 (2012)CrossRefGoogle Scholar
  16. 16.
    Campbell, A.M., Gendreau, M., Thomas, B.W.: The orienteering problem with stochastic travel and service times. Ann. Oper. Res. 186(1), 61–81 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Dellaert, F., Kaess, M.: Square Root SAM: simultaneous localization and mapping via square root information smoothing. Int. J. Robot. Res. 25(12), 1181–1203 (2006)CrossRefzbMATHGoogle Scholar
  18. 18.
    Dellaert, F.: Factor graphs and GTSAM: a hands-on introduction. Technical Report, September, GT RIM (2012)Google Scholar
  19. 19.
    Guizzo, E.: Fukushima robot operator writes tell-all blog. In: IEEE Spectrum.
  20. 20.
    Howard, T.M., Kelly, A.: Optimal rough terrain trajectory generation for wheeled mobile robots. Int. J. Robot. Res. 26(2), 141–166 (2007)CrossRefGoogle Scholar
  21. 21.
    Johnson, S.G.: The NLopt nonlinear-optimization package.
  22. 22.
    Leonard, J.J., Durrant-Whyte, H.F.: Simultaneous map building and localization for an autonomous mobile robot. In: IEEE/RSJ International Workshop on Intelligent Robots and Systems (1991)Google Scholar
  23. 23.
    Likhachev, M.: Search-Based Planning Library.
  24. 24.
    Murphy, R.R.: Disaster Robotics. MIT Press (2014)Google Scholar
  25. 25.
    Nagatani, K., Kiribayashi, S., Okada, Y., Otake, K., Yoshida, K., Tadokoro, S., Nishimura, T., Yoshida, T., Koyanagi, E., Fukushima, M., Kawatsuma, S.: Emergency response to the nuclear accident at the Fukushima Daiichi Nuclear Power Plants using mobile rescue robots. J. Field Robot. 30(1), 44–63 (2013)CrossRefGoogle Scholar
  26. 26.
    Olson, E., Strom, J., Morton, R., Richardson, A., Ranganathan, P., Goeddel, R., Bulic, M., Crossman, J., Marinier, B.: Progress toward multi-robot reconnaissance and the MAGIC 2010 competition. J. Field Robot. 29(5), 762–792 (2012)Google Scholar
  27. 27.
    Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T.B., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source Robot Operating System. In: International Conference on Robotics and Automation, Open-Source Software workshop (2009)Google Scholar
  28. 28.
    Rogers, J.G., Fink, J.R., Stump, E.A.: Mapping with a ground robot in GPS denied and degraded environments. In: American Control Conference (2014)Google Scholar
  29. 29.
    Segal, A.V., Haehnel, D., Thrun, S.: Generalized-ICP. In: Robotics: Science and Systems (2009)Google Scholar
  30. 30.
    Stachniss, C., Burgard, W.: Exploring unknown environments with mobile robots using coverage maps. In: IJCAI, pp. 1127–1134 (2003)Google Scholar
  31. 31.
    Strickland, E.: 24 hours at Fukushima. IEEE Spectr. 48(11), 35–42 (2011)CrossRefGoogle Scholar
  32. 32.
    Taylan, I., Iravani, S.M.R., Daskin, M.S.: The orienteering problem with stochastic profits. IEE Trans. 40(4), 406–421 (2008)Google Scholar
  33. 33.
    Thrun, S.: The graph SLAM algorithm with applications to large-scale mapping of urban structures. Int. J. Robot. Res. 25(5–6), 403–429 (2006)CrossRefGoogle Scholar
  34. 34.
    Twigg, J.N., Fink, J., Yu, P.L., Sadler, B.M.: Efficient base station connectivity area discovery. Int. J. Robot. Res. (2013)Google Scholar
  35. 35.
    U.S. Department of Defense: Foreign humanitarian assistance. Joint Publication, 3–29 Jan 2014Google Scholar
  36. 36.
    Vansteenwegen, P., Souffriau, W., Van Oudheusden, D.: The orienteering problem: a survey. Eur. J. Oper. Res. 209(1), 110 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jason Gregory
    • 1
    Email author
  • Jonathan Fink
    • 1
  • Ethan Stump
    • 1
  • Jeffrey Twigg
    • 1
  • John Rogers
    • 1
  • David Baran
    • 1
  • Nicholas Fung
    • 1
  • Stuart Young
    • 1
  1. 1.U.S. Army Research LaboratoryAdelphiUSA

Personalised recommendations