Return to Antikythera: Multi-session SLAM Based AUV Mapping of a First Century B.C. Wreck Site

  • Stefan B. WilliamsEmail author
  • Oscar Pizarro
  • Brendan Foley
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 113)


This paper describes an expedition to map a first century B.C. ship wreck off the coast of the Greek island of Antikythera using an Autonomous Underwater Vehicle (AUV) equipped with a high-resolution stereo imaging system. The wreck, first discovered in 1900, has yielded a wealth of important historical artefacts from two previous interventions, including the renowned Antikythera mechanism. The deployments described in this paper aimed to map the current state of the wreck site prior to further excavation. Over the course of 10 days of operation, the AUV completed multiple dives over the main wreck site and other nearby targets of interest. This paper describes the motivation for returning to the wreck and producing a detailed map, gives an overview of the techniques used for multi-session Simultaneous Localisation and Mapping (SLAM) to stitch data from two dives into a single, composite map of the site and presents preliminary results of the mapping exercise.


Loop Closure Autonomous Underwater Vehicle Woods Hole Oceanographic Institution Multibeam Sonar Wreck Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the Hellenic Ministry of Culture and Sports, the ARGO Civil Non-Profit Company for Scientific Research and Training, the Aikaterini Laskaridis Foundation, Hublot S.A., Swordspoint Foundation, Jane and James Orr, Jr., OTE-Cosmote, Domestic Property Committee of Kythera and Antikythera, Costa Navarino, Family of Michael Dubno and Loren Blackford, Laetitia and Richard Garriott de Cayeux. Dr. Pizarro and Prof. Williams are supported by the Australian Research Council. Thanks to EdgeTech for providing the gridded multibeam maps used to plan the AUV dives. The authors would like to thank the captain and crew of MV Glaros used to facilitate the deployment and recovery of the vehicle and the RV Poseidon who were instrumental in tracking the AUV during dives. Thanks also to Ephorate of Underwater Antiquities Director Dr. Aggeliki Simosi and EUA field director Dr. Theotokis Theodoulou, Alexandros Sotiriou for help with logistics and Phil Short of Phil Short Technical for providing video of the vehicle while conducting the survey. We also acknowledge the help of all those who have contributed to the development and operation of the AUV Sirius, including Christian Lees, Andrew Durrant, Ritesh Lal and Jeremy Randle.


  1. 1.
    de Solla Price, D.: Gears from the greeks. the antikythera mechanism: a calendar computer from ca. 80 b. c. Trans. Am. Philos. Soc. 64(7), 1–70 (1974).
  2. 2.
    Freeth, T., Bitsakis, Y., Moussas, X., Seiradakis, J., Tselikas, A., Mangou, H., Zafeiropoulou, M., Hadland, R., Bate, D., Ramsey, A., Allen, M., Crawley, A., Hockley, P., Malzbender, T., Gelb, D., Ambrisco, W., Edmunds, M.: Decoding the ancient greek astronomical calculator known as the antikythera mechanism. Nature 444, 587–591 (2006)CrossRefGoogle Scholar
  3. 3.
    Edmunds, M.G., Morgan, P.: The antikythera mechanism: still a mystery of greek astronomy?. Astron. Geophys. 41(6), 6.10–6.17 (2000).
  4. 4.
    Wright, M.: The antikythera mechanism and the early history of the moon-phase display. Antiq. Horol. 29(3), 319 (2006)Google Scholar
  5. 5.
    Grasmueck, M., Eberli, G.P., Viggiano, D.A., Correa, T., Rathwell, G., Luo, J.: Autonomous underwater vehicle (AUV) mapping reveals coral mound distribution, morphology, and oceanography in deep water of the Straits of Florida. Geophys. Res. Lett. 33, 6 (2006)CrossRefGoogle Scholar
  6. 6.
    Marthiniussen, R., Vestgard, K., Klepaker, R., Storkersen, N.: HUGIN-AUV concept and operational experiences to date. In: OCEANS ’04. MTTS/IEEE TECHNO-OCEAN ’04, vol. 2, pp. 846–850 (2004)Google Scholar
  7. 7.
    Singh, H., Armstrong, R., Gilbes, F., Eustice, R., Roman, C., Pizarro, O., Torres, J.: Imaging coral I: imaging coral habitats with the SeaBED AUV. Subsurf. Sens. Technol. Appl. 5, 25–42 (2004)CrossRefGoogle Scholar
  8. 8.
    Yoerger, D., Jakuba, M., Bradley, A., Bingham, B.: Techniques for deep sea near bottom survey using an autonomous underwater vehicle. Int. J. Robot. Res. 26, 41–54 (2007)CrossRefzbMATHGoogle Scholar
  9. 9.
    Kunz, C., Singh, H.: Map building fusing acoustic and visual information using autonomous underwater vehicles. J. Field Robot. 30, 763783 (2013)CrossRefGoogle Scholar
  10. 10.
    Clarke, M.E., Tolimieri, N., Singh, H.: Using the SeaBED AUV to assess populations of groundfish in untrawlable areas. The Future Fisheries Science in North America. Fish and Fisheries Series, vol. 1, pp. 357–372. Springer, Netherlands (2009)CrossRefGoogle Scholar
  11. 11.
    McEwen, R., Caress, D., Thomas, H., Henthorn, R., Kirkwood, W.: Performance of an autonomous underwater vehicle while mapping smooth ridge in monterey bay. In: ASLO/TOS/AGU Ocean Sciences Meeting (2006)Google Scholar
  12. 12.
    Henthorn, R., Caress, D., Thomas, H., McEwen, R., Kirkwood, W., Paull, C., Keate, R.: High-resolution multibeam and subbottom surveys of submarine canyons and gas seeps using the MBARI mapping AUV. In: Proceedings of the MTS/IEEE Oceans, pp. 1–6 (2006)Google Scholar
  13. 13.
    Foley, B. Mindell, D.: Precision survey and archaeological methodology in deep water. ENALIA The Journal of the Hellenic Institute of Marine Archaeology, 49–56 (2002)Google Scholar
  14. 14.
    Foley, B., DellaPorta, K., Sakellariou, D., Bingham, B., Camilli, R., Eustice, R., Evagelistis, D., Ferrini, V., Katsaros, M., Kourkoumelis, D., Mallios, A., Micha, P., Mindell, D., Roman, C., Singh, H., Switzer, D., Theodoulou, T.: The 2005 chios ancient shipwreck survey: new methods for underwater archaeology. Hesperia 78(2), 269305 (2009)CrossRefGoogle Scholar
  15. 15.
    Bingham, B., Foley, B., Singh, H., Camilli, R., Delaporta, K., Eustice, R., Mallios, A., Mindell, D., Roman, C., Sakellariou, D.: Robotic tools for deep water archaeology: surveying an ancient shipwreck with an autonomous underwater vehicle. J. Field Robot. 27(6), 702–717 (2010)CrossRefGoogle Scholar
  16. 16.
    Williams, S.B., Pizarro, O., Jakuba, M., Barrett, N.: AUV benthic habitat mapping in south eastern Tasmania. In: Howard, A., Iagnemma, K., Kelly, A. (eds.) Proceedings of the 7th International Conference on Field and Service Robotics, Springer Tracts in Advanced Robotics, vol. 62, pp. 275–284. Springer, Berlin (2010)Google Scholar
  17. 17.
    Williams, S.B., Pizarro, O., Jakuba, M., Mahon, I., Ling, S., Johnson, C.: Repeated AUV surveying of urchin barrens in North Eastern Tasmania. In: Proceedings IEEE International Conference on Robotics and Automation, vol. 1, pp. 293–299, 3–8 May 2010Google Scholar
  18. 18.
    Williams, S., Pizarro, O., Jakuba, M., Johnson, C., Barrett, N., Babcock, R., Kendrick, G., Steinberg, P., Heyward, A., Doherty, P., Mahon, I., Johnson-Roberson, M., Steinberg, D., Friedman, A.: Monitoring of benthic reference sites: using an autonomous underwater vehicle. IEEE Robot. Autom. Mag. 19(1), 73–84 (2012)CrossRefGoogle Scholar
  19. 19.
    Mahon, I., Williams, S.B., Pizarro, O., Johnson-Roberson, M.: Efficient view-based SLAM using visual loop closures. IEEE Trans. Robot. 24, 1002–1014 (2008)CrossRefGoogle Scholar
  20. 20.
    Johnson-Roberson, M., Pizarro, O., Williams, S.B., Mahon, I.: Generation and visualization of large-scale three-dimensional reconstructions from underwater robotic surveys. J. Field Robot. 27(1), 21–51 (2010)CrossRefGoogle Scholar
  21. 21.
    Singh, H., Can, A., Eustice, R., Lerner, S., McPhee, N., Pizarro, O., Roman, C.: Seabed auv offers new platform for high-resolution imaging. EOS, Trans. AGU, 85(31), 289–295 (2004)Google Scholar
  22. 22.
    Williams, S.B., Pizarro, O., Webster, J., Beaman, R., Mahon, I., Johnson-Roberson, M., Bridge, T.: AUV-assisted surveying of drowned reefs on the shelf edge of the Great Barrier Reef, Australia. J. Field Robot. 27(5), 675–697 (2010)CrossRefGoogle Scholar
  23. 23.
    Caruso, M.J.: Applications of magnetic sensors for low cost compass systems. In: Position Location and Navigation Symposium, IEEE 2000, 177–184 (2000)Google Scholar
  24. 24.
    Jakuba, M.V., Pizarro, O., Williams, S.B.: High resolution, consistent navigation and 3D optical reconstructions from AUVs using magnetic compasses and pressure-based depth sensors. In: Proceedings of IEEE Oceans (2010 )Google Scholar
  25. 25.
    Eustice, R., Singh, H., Leonard, J., Walter, M.: Visually mapping the RMS Titanic: Conservative covariance estimates for SLAM information filters. Int. J. Robot. Res. 25(12), 1223–1242 (2006)CrossRefGoogle Scholar
  26. 26.
    Latif, Y., Cadena, C., Neira, J.: Robust loop closing over time for pose graph slam. Int. J. Robot. Res. 32(14), 1611–1626 (2013).
  27. 27.
    McDonald, J., Kaess, M., Cadena, C., Neira, J., Leonard, J.: Real-time 6-dof multi-session visual SLAM over large-scale environments. Robot. Auton. Syst. 61(10), 1144–1158 (2013). selected Papers from the 5th European Conference on Mobile Robots (ECMR 2011)Google Scholar
  28. 28.
    Forster, C., Lynen, S., Kneip, L., Scaramuzza, D.: Collaborative monocular slam with multiple micro aerial vehicles. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3962–3970, Nov 2013Google Scholar
  29. 29.
    Fallon, M., Johannsson, H., Kaess, M., Folkesson, J., McClelland, H., Englot, B., Hover, F., Leonard, J.J.: Simultaneous localization and mapping in marine environments. In: Seto, M.L. (ed.) Marine Robot Autonomy, pp. 329–372. Springer, New York (2013)CrossRefGoogle Scholar
  30. 30.
    Ozog, P., Eustice, R.: Real-time slam with piecewise-planar surface models and sparse 3d point clouds. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1042–1049, Nov 2013Google Scholar
  31. 31.
    Pandey, G., McBride, J., Savarese, S., Eustice, R.: Toward mutual information based place recognition. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3185–3192, May 2014Google Scholar
  32. 32.
    Singh, H., Howland, J., Pizarro, O.: Advances in large-area photomosaicking underwater. IEEE J. Ocean. Eng. 29, 872–886 (2004)CrossRefGoogle Scholar
  33. 33.
    Ferrer, J., Elibol, A., Delaunoy, O., Gracias, N., Garcia, R.: Large-area photo-mosaics using global alignment and navigation data. In Oceans’07, pp. 1–9 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Stefan B. Williams
    • 1
    Email author
  • Oscar Pizarro
    • 1
  • Brendan Foley
    • 2
  1. 1.Australian Centre for Field Robotics (ACFR)University of SydneySydneyAustralia
  2. 2.Woods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations